Tariff rate, applied, simple mean, manufactured products (%)

Source: worldbank.org, 03.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Angola Angola 10.2 -4.05% 45
Albania Albania 0.4 -71.2% 109
Argentina Argentina 12.4 +0.325% 22
Australia Australia 2.12 +3.41% 96
Austria Austria 1.44 -13.8% 102
Azerbaijan Azerbaijan 8.79 -2.33% 52
Burundi Burundi 11.9 +11.7% 29
Belgium Belgium 1.44 -13.8% 102
Benin Benin 10.7 +0.188% 38
Burkina Faso Burkina Faso 11.4 +1.06% 33
Bangladesh Bangladesh 12.6 +2.28% 18
Bulgaria Bulgaria 1.44 -13.8% 102
Bahrain Bahrain 3.77 0% 79
Bahamas Bahamas 27.9 +8.66% 1
Bosnia & Herzegovina Bosnia & Herzegovina 3.05 -1.61% 83
Belize Belize 10 0% 46
Bermuda Bermuda 19.7 -1.05% 2
Bolivia Bolivia 9.97 0% 47
Brazil Brazil 13.8 +0.655% 12
Barbados Barbados 10.5 +30.3% 39
Brunei Brunei 0.19 +46.2% 112
Bhutan Bhutan 6.36 +68.3% 63
Botswana Botswana 8.68 +7.29% 54
Central African Republic Central African Republic 18.1 +14.5% 7
Canada Canada 1.46 -11.5% 101
Switzerland Switzerland 0.7 -32% 107
Chile Chile 1.01 -3.81% 105
China China 5.21 +1.56% 69
Côte d’Ivoire Côte d’Ivoire 12.3 +5.66% 25
Cameroon Cameroon 18.3 +0.882% 5
Congo - Brazzaville Congo - Brazzaville 18.6 +49.6% 4
Colombia Colombia 3.55 +12% 80
Cape Verde Cape Verde 13.8 +5.57% 11
Costa Rica Costa Rica 2.51 -4.2% 92
Cuba Cuba 10.4 +1.26% 41
Cyprus Cyprus 1.44 -13.8% 102
Czechia Czechia 1.44 -13.8% 102
Germany Germany 1.44 -13.8% 102
Denmark Denmark 1.44 -13.8% 102
Dominican Republic Dominican Republic 3.97 -24.5% 76
Algeria Algeria 11 -13.1% 37
Ecuador Ecuador 7.89 +1.15% 58
Spain Spain 1.44 -13.8% 102
Estonia Estonia 1.44 -13.8% 102
Finland Finland 1.44 -13.8% 102
France France 1.44 -13.8% 102
Gabon Gabon 18.2 -1.14% 6
United Kingdom United Kingdom 0.69 -10.4% 108
Georgia Georgia 0.24 -20% 110
Ghana Ghana 12.4 +0.974% 20
Guinea Guinea 12.3 -0.646% 26
Gambia Gambia 13.2 -0.302% 13
Guinea-Bissau Guinea-Bissau 12.7 +1.35% 17
Equatorial Guinea Equatorial Guinea 18.9 +4.25% 3
Greece Greece 1.44 -13.8% 102
Grenada Grenada 11.8 +27.2% 31
Guatemala Guatemala 3.06 +5.15% 82
Guyana Guyana 8.05 -1.59% 56
Hong Kong SAR China Hong Kong SAR China 0 113
Honduras Honduras 1.54 -50.6% 99
Croatia Croatia 1.44 -13.8% 102
Hungary Hungary 1.44 -13.8% 102
Indonesia Indonesia 5.78 -4.46% 65
India India 9 +2.27% 50
Ireland Ireland 1.44 -13.8% 102
Iceland Iceland 0 113
Israel Israel 2.79 -3.13% 89
Italy Italy 1.44 -13.8% 102
Jamaica Jamaica 8.72 +7.52% 53
Jordan Jordan 3.79 -1.81% 78
Japan Japan 0.97 -11% 106
Kazakhstan Kazakhstan 4.73 +5.82% 72
Kenya Kenya 15.1 +10.2% 9
Cambodia Cambodia 12 +56.9% 28
South Korea South Korea 2.4 +12.1% 94
Kuwait Kuwait 4.71 +19.2% 73
Laos Laos 2.49 +0.81% 93
Liberia Liberia 12.5 -1.66% 19
Lesotho Lesotho 4.5 -29% 74
Lithuania Lithuania 1.44 -13.8% 102
Latvia Latvia 1.44 -13.8% 102
Macao SAR China Macao SAR China 0 113
Moldova Moldova 2.08 +0.971% 97
Madagascar Madagascar 9.69 +19.9% 48
Maldives Maldives 11.2 +2.93% 35
Mexico Mexico 2.62 -16.6% 91
North Macedonia North Macedonia 2.97 +4.21% 85
Mali Mali 11.6 +4.77% 32
Malta Malta 1.44 -13.8% 102
Myanmar (Burma) Myanmar (Burma) 2.84 -1.73% 88
Montenegro Montenegro 1.52 -6.17% 100
Mongolia Mongolia 4.85 -0.411% 71
Mauritania Mauritania 12.3 +2.58% 23
Mauritius Mauritius 1.06 -6.19% 104
Malaysia Malaysia 5.54 -1.42% 66
Namibia Namibia 7.39 +5.12% 62
Niger Niger 10.4 +1.17% 42
Nigeria Nigeria 11.8 -4.54% 30
Nicaragua Nicaragua 2.89 -1.03% 87
Netherlands Netherlands 1.44 -13.8% 102
Norway Norway 0.22 -38.9% 111
Nepal Nepal 12.9 +4.81% 15
New Zealand New Zealand 2.38 +17.8% 95
Oman Oman 2.98 -0.334% 84
Pakistan Pakistan 11.2 -6.1% 36
Panama Panama 5.32 +0.377% 68
Peru Peru 1.16 +1.75% 103
Philippines Philippines 3.82 -1.29% 77
Poland Poland 1.44 -13.8% 102
Portugal Portugal 1.44 -13.8% 102
Paraguay Paraguay 8.4 +1.82% 55
Qatar Qatar 4.09 -0.487% 75
Romania Romania 1.44 -13.8% 102
Rwanda Rwanda 10.4 -2.71% 40
Saudi Arabia Saudi Arabia 5.84 +24.8% 64
Senegal Senegal 12.4 -1.2% 21
Singapore Singapore 0 113
Solomon Islands Solomon Islands 10.3 +14.9% 44
Sierra Leone Sierra Leone 12.8 +0.627% 16
El Salvador El Salvador 2.94 -5.77% 86
Suriname Suriname 8.94 -2.51% 51
Slovakia Slovakia 1.44 -13.8% 102
Slovenia Slovenia 1.44 -13.8% 102
Sweden Sweden 1.44 -13.8% 102
Eswatini Eswatini 5.06 -32.5% 70
Seychelles Seychelles 0.7 0% 107
Chad Chad 17.8 -0.557% 8
Togo Togo 12.3 +12.9% 24
Thailand Thailand 7.61 -1.81% 61
Tonga Tonga 10.3 +3.32% 43
Trinidad & Tobago Trinidad & Tobago 7.96 -1.49% 57
Turkey Turkey 5.48 +199% 67
Tanzania Tanzania 12.1 +5.7% 27
Uganda Uganda 13.9 +2.35% 10
Ukraine Ukraine 1.98 -2.46% 98
Uruguay Uruguay 10.2 +0.394% 45
United States United States 2.78 -2.11% 90
St. Vincent & Grenadines St. Vincent & Grenadines 7.71 -4.1% 59
Venezuela Venezuela 13 -1.81% 14
Vietnam Vietnam 3.44 -13.1% 81
Vanuatu Vanuatu 9.34 +2.3% 49
South Africa South Africa 7.7 +2.67% 60
Zambia Zambia 11.3 -0.961% 34

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'TM.TAX.MANF.SM.AR.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'TM.TAX.MANF.SM.AR.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))