Survival to age 65, female (% of cohort)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 89.2 +0.119% 75
Afghanistan Afghanistan 70.4 +0.713% 183
Angola Angola 69.3 +0.951% 188
Albania Albania 91.7 +0.748% 46
Andorra Andorra 95.1 +0.0227% 5
United Arab Emirates United Arab Emirates 96.1 +0.822% 3
Argentina Argentina 86.5 +1.42% 102
Armenia Armenia 89.8 +1.19% 66
American Samoa American Samoa 82.2 +0.0619% 130
Antigua & Barbuda Antigua & Barbuda 86.7 +0.0967% 100
Australia Australia 93.6 +1.3% 24
Austria Austria 93.5 +0.251% 26
Azerbaijan Azerbaijan 87.1 +1.86% 94
Burundi Burundi 66.4 +2.65% 196
Belgium Belgium 92.4 +0.437% 40
Benin Benin 61.5 +1.21% 207
Burkina Faso Burkina Faso 64.8 +2.37% 200
Bangladesh Bangladesh 82.3 +0.467% 128
Bulgaria Bulgaria 87.3 +2.52% 93
Bahrain Bahrain 91.4 +0.248% 50
Bahamas Bahamas 83 +0.19% 125
Bosnia & Herzegovina Bosnia & Herzegovina 89.5 +1.45% 70
Belarus Belarus 86.9 +0.118% 95
Belize Belize 83.5 +4.19% 118
Bermuda Bermuda 92.9 +0.0643% 37
Bolivia Bolivia 75.2 +2.52% 160
Brazil Brazil 86.4 +1.61% 103
Barbados Barbados 87.4 +0.191% 92
Brunei Brunei 85 +8.79% 107
Bhutan Bhutan 83.1 +0.474% 124
Botswana Botswana 75 +1.23% 161
Central African Republic Central African Republic 52.5 +564% 214
Canada Canada 92.2 +1.33% 42
Switzerland Switzerland 94.6 +0.251% 8
Chile Chile 90.7 +1.69% 53
China China 90.4 -0.142% 59
Côte d’Ivoire Côte d’Ivoire 60.5 +1.28% 210
Cameroon Cameroon 67.9 +4.81% 192
Congo - Kinshasa Congo - Kinshasa 64.6 +3.12% 201
Congo - Brazzaville Congo - Brazzaville 67.7 +3.21% 193
Colombia Colombia 89.1 +1.58% 76
Comoros Comoros 72.6 +0.721% 176
Cape Verde Cape Verde 89.9 +0.149% 65
Costa Rica Costa Rica 90.7 +0.782% 54
Cuba Cuba 87.5 +0.458% 91
Curaçao Curaçao 90.7 +0.0708% 56
Cayman Islands Cayman Islands 87.9 +0.276% 85
Cyprus Cyprus 94.3 +1.68% 17
Czechia Czechia 91.9 +0.602% 44
Germany Germany 92.4 +0.508% 41
Djibouti Djibouti 71.8 +0.988% 179
Dominica Dominica 83.4 +0.0366% 119
Denmark Denmark 92.9 +0.397% 36
Dominican Republic Dominican Republic 83.4 -1.21% 120
Algeria Algeria 87.8 +0.3% 88
Ecuador Ecuador 86.9 +1.15% 96
Egypt Egypt 81.6 +1.5% 135
Eritrea Eritrea 75 +2.42% 162
Spain Spain 94.3 +1.03% 16
Estonia Estonia 91.7 +1.13% 47
Ethiopia Ethiopia 75.6 +0.905% 158
Finland Finland 93.3 +0.495% 29
Fiji Fiji 69.3 +0.411% 187
France France 92.9 +0.0857% 35
Faroe Islands Faroe Islands 93.2 +0.99% 31
Micronesia (Federated States of) Micronesia (Federated States of) 74.1 +0.993% 167
Gabon Gabon 74.6 +2.11% 166
United Kingdom United Kingdom 91.1 +0.206% 52
Georgia Georgia 87.7 +0.0356% 89
Ghana Ghana 70.2 +0.789% 184
Gibraltar Gibraltar 94 +0.0364% 21
Guinea Guinea 61.7 +0.715% 205
Gambia Gambia 69.6 +3.18% 186
Guinea-Bissau Guinea-Bissau 68 +1.3% 191
Equatorial Guinea Equatorial Guinea 66.8 +0.963% 194
Greece Greece 94 +2.34% 20
Grenada Grenada 83 +0.0734% 126
Greenland Greenland 77.2 +0.101% 152
Guatemala Guatemala 80.3 +2.83% 139
Guam Guam 84.7 +0.143% 108
Guyana Guyana 77.2 +0.586% 153
Hong Kong SAR China Hong Kong SAR China 94.6 +0.671% 9
Honduras Honduras 82.2 +0.259% 129
Croatia Croatia 91.6 +0.457% 48
Haiti Haiti 71.9 +3.41% 178
Hungary Hungary 88 +1.15% 83
Indonesia Indonesia 78.5 +0.588% 147
Isle of Man Isle of Man 91.5 +0.0449% 49
India India 78.6 +0.687% 146
Ireland Ireland 93.2 +0.23% 30
Iran Iran 90.2 +1.42% 63
Iraq Iraq 81.5 +0.533% 136
Iceland Iceland 93.2 +0.93% 32
Israel Israel 93.6 -0.34% 23
Italy Italy 94.4 +1.29% 14
Jamaica Jamaica 79.9 +0.0308% 141
Jordan Jordan 90 +0.92% 64
Japan Japan 94.7 +0.385% 7
Kazakhstan Kazakhstan 86.7 +2.17% 99
Kenya Kenya 61.6 +0.0364% 206
Kyrgyzstan Kyrgyzstan 83.9 +0.32% 114
Cambodia Cambodia 79.1 +0.223% 144
Kiribati Kiribati 71.5 +0.646% 180
St. Kitts & Nevis St. Kitts & Nevis 83.3 +3.71% 122
South Korea South Korea 96.4 +1.94% 2
Kuwait Kuwait 94.6 +1.67% 10
Laos Laos 76.9 +0.555% 156
Lebanon Lebanon 89.4 -0.191% 72
Liberia Liberia 61.9 +0.668% 204
Libya Libya 73.1 -13.4% 172
St. Lucia St. Lucia 84.4 -0.00835% 111
Liechtenstein Liechtenstein 94.6 +0.0309% 11
Sri Lanka Sri Lanka 90.6 +0.203% 57
Lesotho Lesotho 50.6 +2.52% 215
Lithuania Lithuania 88.4 +1.68% 80
Luxembourg Luxembourg 91.8 -0.804% 45
Latvia Latvia 87.9 +1.43% 86
Macao SAR China Macao SAR China 94.4 -1.04% 13
Saint Martin (French part) Saint Martin (French part) 93.4 -0.00461% 28
Morocco Morocco 86.8 +0.171% 98
Monaco Monaco 96.5 +0.153% 1
Moldova Moldova 81.4 -2.53% 137
Madagascar Madagascar 66.8 +2.04% 195
Maldives Maldives 94.3 +0.306% 15
Mexico Mexico 84.4 +1.68% 112
Marshall Islands Marshall Islands 70.8 +0.508% 181
North Macedonia North Macedonia 89.5 -0.166% 71
Mali Mali 63 +0.911% 202
Malta Malta 93 +0.636% 33
Myanmar (Burma) Myanmar (Burma) 74.7 +0.503% 165
Montenegro Montenegro 89.3 +2.04% 73
Mongolia Mongolia 83.3 +0.372% 121
Northern Mariana Islands Northern Mariana Islands 89.8 +0.308% 67
Mozambique Mozambique 70 +2.28% 185
Mauritania Mauritania 74.8 +0.471% 163
Mauritius Mauritius 84.7 +1.23% 109
Malawi Malawi 73.5 +3.85% 171
Malaysia Malaysia 86.6 +1.69% 101
Namibia Namibia 72.8 +10.3% 173
New Caledonia New Caledonia 89.6 +1.73% 69
Niger Niger 65.1 +2.78% 199
Nigeria Nigeria 48.8 +1.07% 216
Nicaragua Nicaragua 84.3 +0.467% 113
Netherlands Netherlands 92.6 +0.187% 39
Norway Norway 94.5 +0.789% 12
Nepal Nepal 77.4 +0.628% 150
Nauru Nauru 59.2 -0.167% 212
New Zealand New Zealand 92.1 +0.818% 43
Oman Oman 92.8 +2.42% 38
Pakistan Pakistan 76.1 +0.46% 157
Panama Panama 88.9 +0.209% 77
Peru Peru 85.4 -0.557% 105
Philippines Philippines 78.6 +0.84% 145
Palau Palau 75.5 +0.948% 159
Papua New Guinea Papua New Guinea 72 +2.47% 177
Poland Poland 90.4 +0.613% 60
Puerto Rico Puerto Rico 92.9 +2.99% 34
North Korea North Korea 83.7 +0.138% 116
Portugal Portugal 93.5 +0.84% 27
Paraguay Paraguay 83.8 +3.15% 115
Palestinian Territories Palestinian Territories 74.8 -15.7% 164
French Polynesia French Polynesia 95.4 +0.123% 4
Qatar Qatar 94 +0.57% 19
Romania Romania 87.9 +0.912% 87
Russia Russia 85.3 +1.7% 106
Rwanda Rwanda 72.7 +0.621% 174
Saudi Arabia Saudi Arabia 90.3 +1.04% 62
Sudan Sudan 73.9 +2.79% 168
Senegal Senegal 77.1 +2.39% 154
Singapore Singapore 93.8 +0.91% 22
Solomon Islands Solomon Islands 77.1 +0.389% 155
Sierra Leone Sierra Leone 65.1 +1.18% 197
El Salvador El Salvador 81.9 +0.134% 131
San Marino San Marino 95 -0.0678% 6
Somalia Somalia 61.3 +14% 208
Serbia Serbia 88.1 +0.502% 81
South Sudan South Sudan 59.7 +2.24% 211
São Tomé & Príncipe São Tomé & Príncipe 78.2 +0.978% 149
Suriname Suriname 81.6 +0.526% 134
Slovakia Slovakia 90.4 +1.3% 61
Slovenia Slovenia 93.6 +0.893% 25
Sweden Sweden 94.1 +0.112% 18
Eswatini Eswatini 65.1 +3.97% 198
Sint Maarten Sint Maarten 89.2 +0.317% 74
Seychelles Seychelles 84.5 +4.02% 110
Syria Syria 81.9 -1.71% 132
Turks & Caicos Islands Turks & Caicos Islands 88.5 +0.103% 79
Chad Chad 52.8 +1.6% 213
Togo Togo 63 +1.23% 203
Thailand Thailand 86.3 +1.76% 104
Tajikistan Tajikistan 81.4 +0.408% 138
Turkmenistan Turkmenistan 80.3 +0.359% 140
Timor-Leste Timor-Leste 73.6 +0.716% 169
Tonga Tonga 82.8 +0.432% 127
Trinidad & Tobago Trinidad & Tobago 83.6 +0.284% 117
Tunisia Tunisia 89.7 +0.51% 68
Turkey Turkey 88.6 -2.46% 78
Tuvalu Tuvalu 72.6 +0.677% 175
Tanzania Tanzania 69.3 +0.0439% 189
Uganda Uganda 70.4 +1.22% 182
Ukraine Ukraine 86.8 +0.986% 97
Uruguay Uruguay 88 +2.07% 84
United States United States 88.1 +1.88% 82
Uzbekistan Uzbekistan 81.7 +0.929% 133
St. Vincent & Grenadines St. Vincent & Grenadines 79.3 +0.049% 143
Venezuela Venezuela 83.1 -0.0546% 123
British Virgin Islands British Virgin Islands 90.6 +0.127% 58
U.S. Virgin Islands U.S. Virgin Islands 91.2 +0.52% 51
Vietnam Vietnam 87.6 +0.0709% 90
Vanuatu Vanuatu 79.5 +0.328% 142
Samoa Samoa 78.3 +0.342% 148
Kosovo Kosovo 90.7 -0.361% 55
Yemen Yemen 77.3 +2.93% 151
South Africa South Africa 69.1 +1.98% 190
Zambia Zambia 73.5 +2.95% 170
Zimbabwe Zimbabwe 60.7 +1.42% 209

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.DYN.TO65.FE.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.DYN.TO65.FE.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))