Sex ratio at birth (male births per female births)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 1.04 0% 41
Afghanistan Afghanistan 1.05 -0.0951% 33
Angola Angola 1.03 0% 57
Albania Albania 1.07 -0.187% 15
Andorra Andorra 1.06 0% 22
United Arab Emirates United Arab Emirates 1.05 0% 38
Argentina Argentina 1.05 0% 33
Armenia Armenia 1.09 -0.367% 6
American Samoa American Samoa 1.06 0% 24
Antigua & Barbuda Antigua & Barbuda 1.03 0% 52
Australia Australia 1.06 0% 28
Austria Austria 1.06 0% 29
Azerbaijan Azerbaijan 1.12 -0.357% 3
Burundi Burundi 1.03 0% 59
Belgium Belgium 1.05 +0.0954% 35
Benin Benin 1.04 0% 43
Burkina Faso Burkina Faso 1.04 +0.0961% 42
Bangladesh Bangladesh 1.05 -0.0952% 35
Bulgaria Bulgaria 1.06 0% 24
Bahrain Bahrain 1.04 -0.0962% 46
Bahamas Bahamas 1.03 0% 56
Bosnia & Herzegovina Bosnia & Herzegovina 1.07 -0.0936% 17
Belarus Belarus 1.06 +0.0945% 25
Belize Belize 1.05 0% 32
Bermuda Bermuda 1.04 0% 44
Bolivia Bolivia 1.04 0% 42
Brazil Brazil 1.05 0% 39
Barbados Barbados 1.04 0% 49
Brunei Brunei 1.08 -0.0929% 11
Bhutan Bhutan 1.05 0% 36
Botswana Botswana 1.03 0% 52
Central African Republic Central African Republic 1.03 -0.0968% 52
Canada Canada 1.06 +0.0949% 29
Switzerland Switzerland 1.05 0% 33
Chile Chile 1.04 +0.096% 41
China China 1.11 +0.181% 5
Côte d’Ivoire Côte d’Ivoire 1.03 0% 54
Cameroon Cameroon 1.03 0% 54
Congo - Kinshasa Congo - Kinshasa 1.02 0% 60
Congo - Brazzaville Congo - Brazzaville 1.03 0% 58
Colombia Colombia 1.05 0% 39
Comoros Comoros 1.03 0% 52
Cape Verde Cape Verde 1.03 0% 51
Costa Rica Costa Rica 1.05 0% 39
Cuba Cuba 1.07 -0.0933% 14
Curaçao Curaçao 1.05 -0.0954% 37
Cayman Islands Cayman Islands 1.04 0% 48
Cyprus Cyprus 1.07 0% 19
Czechia Czechia 1.05 0% 31
Germany Germany 1.06 0% 28
Djibouti Djibouti 1.04 0% 47
Dominica Dominica 1.04 0% 48
Denmark Denmark 1.06 0% 27
Dominican Republic Dominican Republic 1.04 0% 40
Algeria Algeria 1.05 0% 38
Ecuador Ecuador 1.05 0% 37
Egypt Egypt 1.06 +0.0949% 29
Eritrea Eritrea 1.03 0% 52
Spain Spain 1.06 +0.0941% 20
Estonia Estonia 1.06 0% 23
Ethiopia Ethiopia 1.06 0% 29
Finland Finland 1.05 0% 32
Fiji Fiji 1.07 0% 14
France France 1.05 0% 35
Faroe Islands Faroe Islands 1.07 0% 17
Micronesia (Federated States of) Micronesia (Federated States of) 1.07 0% 15
Gabon Gabon 1.02 0% 62
United Kingdom United Kingdom 1.06 0% 29
Georgia Georgia 1.07 0% 17
Ghana Ghana 1.04 0% 46
Gibraltar Gibraltar 1.07 0% 19
Guinea Guinea 1.05 0% 39
Gambia Gambia 1.03 0% 52
Guinea-Bissau Guinea-Bissau 1.04 0% 43
Equatorial Guinea Equatorial Guinea 1.03 +0.097% 52
Greece Greece 1.06 0% 20
Grenada Grenada 1.04 0% 44
Greenland Greenland 1.05 0% 34
Guatemala Guatemala 1.04 0% 45
Guam Guam 1.07 0% 15
Guyana Guyana 1.04 0% 47
Hong Kong SAR China Hong Kong SAR China 1.08 0% 10
Honduras Honduras 1.05 0% 33
Croatia Croatia 1.06 0% 24
Haiti Haiti 1.03 0% 54
Hungary Hungary 1.06 +0.0945% 25
Indonesia Indonesia 1.06 0% 23
Isle of Man Isle of Man 1.05 0% 34
India India 1.07 -0.186% 12
Ireland Ireland 1.06 +0.0948% 28
Iran Iran 1.05 -0.095% 32
Iraq Iraq 1.06 0% 27
Iceland Iceland 1.06 -0.0943% 24
Israel Israel 1.06 +0.0949% 29
Italy Italy 1.06 0% 25
Jamaica Jamaica 1.04 0% 45
Jordan Jordan 1.05 0% 35
Japan Japan 1.05 0% 33
Kazakhstan Kazakhstan 1.06 -0.0939% 20
Kenya Kenya 1.02 0% 61
Kyrgyzstan Kyrgyzstan 1.06 -0.0946% 28
Cambodia Cambodia 1.05 0% 32
Kiribati Kiribati 1.07 0% 14
St. Kitts & Nevis St. Kitts & Nevis 1.04 0% 47
South Korea South Korea 1.06 0% 26
Kuwait Kuwait 1.05 -0.0954% 37
Laos Laos 1.05 0% 31
Lebanon Lebanon 1.05 0% 31
Liberia Liberia 1.04 0% 45
Libya Libya 1.06 0% 27
St. Lucia St. Lucia 1.03 0% 53
Liechtenstein Liechtenstein 1.16 0% 1
Sri Lanka Sri Lanka 1.04 0% 40
Lesotho Lesotho 1.03 0% 56
Lithuania Lithuania 1.05 0% 32
Luxembourg Luxembourg 1.05 +0.0951% 31
Latvia Latvia 1.06 -0.0939% 20
Macao SAR China Macao SAR China 1.08 0% 8
Saint Martin (French part) Saint Martin (French part) 1.04 0% 44
Morocco Morocco 1.05 0% 37
Monaco Monaco 1.05 +0.0954% 35
Moldova Moldova 1.06 -0.0941% 22
Madagascar Madagascar 1.04 -0.0962% 46
Maldives Maldives 1.05 +0.0952% 33
Mexico Mexico 1.04 0% 45
Marshall Islands Marshall Islands 1.07 0% 15
North Macedonia North Macedonia 1.08 0% 10
Mali Mali 1.03 0% 51
Malta Malta 1.07 0% 17
Myanmar (Burma) Myanmar (Burma) 1.07 0% 18
Montenegro Montenegro 1.07 -0.187% 16
Mongolia Mongolia 1.04 -0.0957% 40
Northern Mariana Islands Northern Mariana Islands 1.15 0% 2
Mozambique Mozambique 1.02 0% 63
Mauritania Mauritania 1.03 0% 51
Mauritius Mauritius 1.04 0% 49
Malawi Malawi 1.01 0% 64
Malaysia Malaysia 1.07 -0.0938% 19
Namibia Namibia 1.01 0% 65
New Caledonia New Caledonia 1.06 0% 25
Niger Niger 1.04 0% 44
Nigeria Nigeria 1.04 0% 46
Nicaragua Nicaragua 1.04 0% 49
Netherlands Netherlands 1.05 0% 32
Norway Norway 1.06 0% 22
Nepal Nepal 1.05 -0.0952% 35
Nauru Nauru 1.07 0% 13
New Zealand New Zealand 1.05 0% 31
Oman Oman 1.04 0% 41
Pakistan Pakistan 1.06 0% 29
Panama Panama 1.05 -0.0948% 30
Peru Peru 1.04 0% 43
Philippines Philippines 1.08 0% 8
Palau Palau 1.08 0% 10
Papua New Guinea Papua New Guinea 1.08 0% 10
Poland Poland 1.06 0% 24
Puerto Rico Puerto Rico 1.05 0% 32
North Korea North Korea 1.06 0% 24
Portugal Portugal 1.06 +0.0948% 28
Paraguay Paraguay 1.05 0% 34
Palestinian Territories Palestinian Territories 1.05 0% 33
French Polynesia French Polynesia 1.06 0% 25
Qatar Qatar 1.04 +0.0962% 44
Romania Romania 1.06 0% 29
Russia Russia 1.06 0% 27
Rwanda Rwanda 1.03 0% 58
Saudi Arabia Saudi Arabia 1.05 0% 33
Sudan Sudan 1.04 0% 43
Senegal Senegal 1.03 0% 53
Singapore Singapore 1.06 0% 24
Solomon Islands Solomon Islands 1.07 0% 15
Sierra Leone Sierra Leone 1.03 +0.0968% 50
El Salvador El Salvador 1.05 0% 36
San Marino San Marino 1.07 0% 18
Somalia Somalia 1.04 0% 40
Serbia Serbia 1.07 0% 16
South Sudan South Sudan 1.04 0% 49
São Tomé & Príncipe São Tomé & Príncipe 1.03 0% 57
Suriname Suriname 1.04 0% 44
Slovakia Slovakia 1.06 +0.0949% 29
Slovenia Slovenia 1.06 -0.094% 21
Sweden Sweden 1.06 -0.0946% 28
Eswatini Eswatini 1.03 -0.0971% 55
Sint Maarten Sint Maarten 1.04 0% 45
Seychelles Seychelles 1.04 0% 48
Syria Syria 1.05 0% 32
Turks & Caicos Islands Turks & Caicos Islands 1.05 0% 35
Chad Chad 1.04 0% 42
Togo Togo 1.03 0% 56
Thailand Thailand 1.06 0% 20
Tajikistan Tajikistan 1.06 0% 21
Turkmenistan Turkmenistan 1.07 0% 17
Timor-Leste Timor-Leste 1.07 0% 14
Tonga Tonga 1.08 0% 7
Trinidad & Tobago Trinidad & Tobago 1.04 0% 43
Tunisia Tunisia 1.05 -0.0951% 33
Turkey Turkey 1.05 -0.0951% 34
Tuvalu Tuvalu 1.07 0% 15
Tanzania Tanzania 1.03 +0.0971% 53
Uganda Uganda 1.03 0% 55
Ukraine Ukraine 1.06 0% 21
Uruguay Uruguay 1.06 -0.0947% 29
United States United States 1.05 +0.0954% 35
Uzbekistan Uzbekistan 1.08 -0.0926% 9
St. Vincent & Grenadines St. Vincent & Grenadines 1.03 0% 51
Venezuela Venezuela 1.05 0% 31
British Virgin Islands British Virgin Islands 1.05 0% 31
U.S. Virgin Islands U.S. Virgin Islands 1.04 0% 45
Vietnam Vietnam 1.11 -0.18% 4
Vanuatu Vanuatu 1.07 0% 15
Samoa Samoa 1.08 0% 11
Kosovo Kosovo 1.07 -0.372% 14
Yemen Yemen 1.06 0% 25
South Africa South Africa 1.04 0% 44
Zambia Zambia 1.01 0% 65
Zimbabwe Zimbabwe 1.03 +0.0977% 59

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.BRTH.MF'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.BRTH.MF'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))