Services, value added (% of GDP)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 39.3 -1.06% 142
Albania Albania 48.9 +1.93% 108
Andorra Andorra 77.6 -0.922% 4
Argentina Argentina 53.4 +0.389% 93
Armenia Armenia 61.5 +3.42% 53
Australia Australia 65.5 +3.1% 30
Austria Austria 65.3 +3.26% 33
Azerbaijan Azerbaijan 42.3 +6.42% 135
Belgium Belgium 72.1 +1.42% 16
Benin Benin 48.9 +2.43% 109
Burkina Faso Burkina Faso 40.2 -7.79% 141
Bangladesh Bangladesh 51.4 +0.596% 99
Bulgaria Bulgaria 62.6 +0.125% 47
Bahamas Bahamas 77.2 -1.75% 5
Bosnia & Herzegovina Bosnia & Herzegovina 58 +3.73% 73
Belarus Belarus 49.7 +1.79% 105
Brazil Brazil 59.3 +0.229% 64
Brunei Brunei 38.7 -0.344% 143
Botswana Botswana 63.5 +7.26% 41
Central African Republic Central African Republic 40.5 -0.1% 140
Switzerland Switzerland 72 -0.185% 17
Chile Chile 56.1 -2.65% 81
China China 56.7 +0.728% 79
Côte d’Ivoire Côte d’Ivoire 53.9 +2.21% 91
Cameroon Cameroon 49.9 -0.556% 103
Congo - Kinshasa Congo - Kinshasa 33 +1.36% 151
Congo - Brazzaville Congo - Brazzaville 45 +11.3% 125
Colombia Colombia 58.2 +2.56% 71
Comoros Comoros 50.1 -1% 102
Cape Verde Cape Verde 69.4 -0.376% 20
Costa Rica Costa Rica 68.8 +1.16% 23
Cyprus Cyprus 76.9 +0.349% 6
Czechia Czechia 59.5 -0.291% 63
Germany Germany 63.9 +1.2% 39
Djibouti Djibouti 75.5 -1.57% 9
Dominica Dominica 56.9 -2.36% 77
Denmark Denmark 64 -0.599% 38
Dominican Republic Dominican Republic 59.8 +0.371% 60
Ecuador Ecuador 57.2 -2.5% 76
Egypt Egypt 48.9 -5.26% 107
Spain Spain 69.1 +0.569% 21
Estonia Estonia 65.1 +0.833% 36
Ethiopia Ethiopia 37.6 +1.61% 145
Finland Finland 62.9 +1.85% 44
Fiji Fiji 56.2 +1.98% 80
France France 70.4 +1.06% 18
Gabon Gabon 37.5 +1.63% 146
United Kingdom United Kingdom 72.8 +0.403% 12
Georgia Georgia 62.8 +1.19% 45
Ghana Ghana 43.9 +1.73% 129
Guinea Guinea 37.5 +0.738% 147
Gambia Gambia 53.9 +0.554% 90
Guinea-Bissau Guinea-Bissau 42.1 -8.2% 136
Equatorial Guinea Equatorial Guinea 51.1 +1.43% 100
Greece Greece 68 -0.939% 24
Grenada Grenada 65.2 +0.96% 35
Guatemala Guatemala 61.8 +0.711% 52
Guyana Guyana 15.3 -18.2% 154
Honduras Honduras 58.4 +1.45% 68
Croatia Croatia 59.7 +1.13% 61
Haiti Haiti 48.3 +1.61% 111
Hungary Hungary 59.7 +2.7% 62
Indonesia Indonesia 43.8 +2.08% 130
India India 49.9 +0.698% 104
Ireland Ireland 61.8 +1.58% 51
Iran Iran 47.9 -0.667% 113
Iraq Iraq 45.8 +4.8% 121
Iceland Iceland 65.5 +0.596% 31
Israel Israel 72.5 +0.54% 14
Italy Italy 65.6 +1.17% 29
Jamaica Jamaica 60.3 +0.202% 57
Jordan Jordan 60.4 -0.634% 56
Kazakhstan Kazakhstan 58.2 +3.31% 70
Kenya Kenya 55.9 +0.951% 82
Kyrgyzstan Kyrgyzstan 52.1 +1.64% 95
Cambodia Cambodia 35.6 -1.54% 149
St. Kitts & Nevis St. Kitts & Nevis 65.5 +0.333% 32
Kuwait Kuwait 55.9 +7.26% 83
Laos Laos 43.5 -1.05% 131
Liberia Liberia 42.1 +20.1% 137
Libya Libya 34.3 +35.1% 150
St. Lucia St. Lucia 75.9 -0.462% 8
Sri Lanka Sri Lanka 57.5 -3.96% 75
Lesotho Lesotho 48 -5.03% 112
Lithuania Lithuania 63.6 +0.79% 40
Luxembourg Luxembourg 81.9 +1.11% 1
Latvia Latvia 63.1 +1.38% 43
Morocco Morocco 54.1 -0.24% 89
Moldova Moldova 62.3 +1.22% 49
Madagascar Madagascar 46.4 -4.21% 119
Maldives Maldives 73.8 +4.55% 10
Mexico Mexico 58.2 +0.902% 72
North Macedonia North Macedonia 59.2 +3.43% 65
Mali Mali 36.7 +1.47% 148
Malta Malta 80.8 -0.398% 2
Myanmar (Burma) Myanmar (Burma) 41.4 +4.2% 139
Montenegro Montenegro 62.1 -0.18% 50
Mongolia Mongolia 44.2 +7.62% 128
Mozambique Mozambique 38.4 -6% 144
Mauritania Mauritania 43.2 -1.5% 132
Mauritius Mauritius 64.4 -0.882% 37
Malawi Malawi 44.9 -5.52% 126
Malaysia Malaysia 53.6 +0.306% 92
Namibia Namibia 54.5 +2.19% 88
Niger Niger 45.4 -2.44% 123
Nigeria Nigeria 47 +10% 116
Nicaragua Nicaragua 46.8 +0.71% 117
Netherlands Netherlands 70.3 +1% 19
Norway Norway 51.8 +3.6% 97
Nepal Nepal 55.2 -0.276% 85
Oman Oman 46.5 +2.63% 118
Pakistan Pakistan 50.5 -0.432% 101
Panama Panama 68.8 +2.25% 22
Peru Peru 52.7 +2.97% 94
Philippines Philippines 63.2 +1.32% 42
Papua New Guinea Papua New Guinea 41.5 -1.35% 138
Poland Poland 59.9 +2.99% 59
Puerto Rico Puerto Rico 51.5 -1.13% 98
Portugal Portugal 66.4 -0.44% 25
Paraguay Paraguay 48.7 +1.26% 110
Qatar Qatar 45.9 +1.39% 120
Romania Romania 62.5 +2.86% 48
Russia Russia 57.5 +1.39% 74
Rwanda Rwanda 47.6 +4.02% 114
Saudi Arabia Saudi Arabia 47.2 +5.37% 115
Sudan Sudan 54.9 +32.6% 87
Senegal Senegal 49.1 -0.98% 106
Singapore Singapore 73 +0.465% 11
Sierra Leone Sierra Leone 44.8 +6.23% 127
El Salvador El Salvador 61 +0.452% 54
Serbia Serbia 58.5 +1.67% 67
São Tomé & Príncipe São Tomé & Príncipe 76.6 +0.99% 7
Slovakia Slovakia 60 -0.222% 58
Slovenia Slovenia 58.2 +0.823% 69
Sweden Sweden 65.9 +1.02% 27
Seychelles Seychelles 65.8 -2.31% 28
Turks & Caicos Islands Turks & Caicos Islands 72.6 -1.3% 13
Chad Chad 31.6 +1.18% 152
Togo Togo 52 +0.462% 96
Thailand Thailand 59.2 +1.19% 66
Turkey Turkey 56.8 +4.98% 78
Tanzania Tanzania 28.4 -0.908% 153
Uganda Uganda 43.1 +1.29% 133
Ukraine Ukraine 60.6 -0.974% 55
Uruguay Uruguay 65.3 -0.593% 34
United States United States 79.7 +0.679% 3
Uzbekistan Uzbekistan 45.2 +2.82% 124
St. Vincent & Grenadines St. Vincent & Grenadines 66.4 +0.0245% 26
Vietnam Vietnam 42.4 +0.155% 134
Samoa Samoa 72.5 +7.02% 15
Kosovo Kosovo 45.7 -1.79% 122
South Africa South Africa 62.7 +0.0962% 46
Zambia Zambia 55.1 -2.95% 86
Zimbabwe Zimbabwe 55.8 -10.7% 84

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NV.SRV.TOTL.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NV.SRV.TOTL.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))