Services, value added per worker (constant 2015 US$)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 2,350 -2.26% 161
Angola Angola 9,429 -2.06% 115
Albania Albania 13,084 +8.5% 101
United Arab Emirates United Arab Emirates 57,242 +1.51% 28
Argentina Argentina 21,665 -1.91% 62
Armenia Armenia 20,990 +12% 65
Australia Australia 105,565 +2.53% 7
Austria Austria 82,424 -2.91% 16
Azerbaijan Azerbaijan 11,784 +2.62% 103
Burundi Burundi 2,943 -0.618% 153
Belgium Belgium 94,085 +1.01% 9
Benin Benin 2,778 +2.77% 157
Burkina Faso Burkina Faso 2,914 +1.32% 154
Bangladesh Bangladesh 5,225 +3.44% 132
Bulgaria Bulgaria 20,789 +2.68% 66
Bahrain Bahrain 41,228 +1.66% 34
Bahamas Bahamas 56,188 -0.421% 29
Bosnia & Herzegovina Bosnia & Herzegovina 18,503 +1.34% 77
Belarus Belarus 10,238 +2.88% 111
Belize Belize 13,973 -0.668% 95
Bolivia Bolivia 5,402 +1.09% 130
Brazil Brazil 17,675 +0.383% 81
Barbados Barbados 39,059 +4.09% 38
Brunei Brunei 34,367 +4.92% 46
Bhutan Bhutan 9,769 -0.0421% 114
Botswana Botswana 19,327 -3.71% 76
Central African Republic Central African Republic 1,662 -11.5% 165
Canada Canada 74,860 -1.1% 22
Switzerland Switzerland 146,710 -1.61% 2
Chile Chile 27,014 -2.51% 58
China China 28,696 +4.71% 55
Côte d’Ivoire Côte d’Ivoire 6,740 +0.0626% 126
Cameroon Cameroon 4,808 -0.269% 136
Congo - Kinshasa Congo - Kinshasa 1,250 -1.47% 166
Congo - Brazzaville Congo - Brazzaville 4,596 -0.986% 140
Colombia Colombia 13,930 -2.35% 97
Comoros Comoros 5,022 -0.311% 134
Cape Verde Cape Verde 11,467 +4.91% 106
Costa Rica Costa Rica 34,351 +9.9% 47
Cuba Cuba 19,559 -3.41% 74
Cyprus Cyprus 39,556 -0.575% 37
Czechia Czechia 38,793 -2.86% 39
Germany Germany 77,213 -0.746% 20
Djibouti Djibouti 15,455 +4.44% 88
Denmark Denmark 96,161 +0.212% 8
Dominican Republic Dominican Republic 16,134 -0.0876% 85
Algeria Algeria 16,540 +1.55% 83
Ecuador Ecuador 15,136 -0.716% 90
Egypt Egypt 15,513 +3.22% 87
Spain Spain 59,811 +0.415% 27
Estonia Estonia 35,790 -4.52% 45
Ethiopia Ethiopia 3,010 +2.8% 152
Finland Finland 81,454 +0.711% 18
Fiji Fiji 14,295 +12.1% 92
France France 84,028 +0.404% 14
Gabon Gabon 18,329 -0.425% 79
United Kingdom United Kingdom 85,461 -0.985% 13
Georgia Georgia 20,537 +9.92% 70
Ghana Ghana 4,686 +2.85% 138
Guinea Guinea 3,669 -0.406% 147
Gambia Gambia 2,625 -0.968% 159
Guinea-Bissau Guinea-Bissau 2,332 -2.6% 162
Equatorial Guinea Equatorial Guinea 27,796 +4.89% 56
Greece Greece 50,270 +2.72% 30
Guatemala Guatemala 13,562 -0.27% 100
Guyana Guyana 16,161 +10.8% 84
Hong Kong SAR China Hong Kong SAR China 92,600 -0.0902% 10
Honduras Honduras 7,912 +6.02% 121
Croatia Croatia 35,978 +0.862% 44
Haiti Haiti 4,101 -4.86% 143
Hungary Hungary 30,405 -0.397% 54
Indonesia Indonesia 8,042 +4.04% 120
India India 8,961 +3.1% 118
Ireland Ireland 131,339 +1.28% 3
Iran Iran 21,313 +2.1% 63
Iraq Iraq 17,441 +5.41% 82
Iceland Iceland 83,604 +2.36% 15
Israel Israel 76,311 -0.651% 21
Italy Italy 81,605 -1.81% 17
Jamaica Jamaica 9,231 +2.12% 116
Jordan Jordan 14,165 -0.174% 94
Japan Japan 64,535 +1.34% 25
Kazakhstan Kazakhstan 20,281 +3.98% 71
Kenya Kenya 5,313 +2.99% 131
Kyrgyzstan Kyrgyzstan 2,899 +4.54% 155
Cambodia Cambodia 3,715 +3.61% 145
South Korea South Korea 49,697 -0.261% 31
Kuwait Kuwait 37,431 -2.77% 42
Laos Laos 10,162 +4.53% 113
Lebanon Lebanon 20,710 -2.49% 68
Liberia Liberia 1,004 -0.439% 167
Libya Libya 15,626 -1.13% 86
St. Lucia St. Lucia 22,053 -5.5% 61
Sri Lanka Sri Lanka 13,972 +0.729% 96
Lesotho Lesotho 4,648 +2.44% 139
Lithuania Lithuania 32,579 -0.204% 51
Luxembourg Luxembourg 192,781 -3.96% 1
Latvia Latvia 33,154 +2.53% 50
Macao SAR China Macao SAR China 123,646 +82.8% 5
Morocco Morocco 13,731 +3.15% 99
Moldova Moldova 10,740 -2.08% 108
Madagascar Madagascar 2,189 -0.754% 164
Maldives Maldives 27,024 +3.83% 57
Mexico Mexico 22,342 -0.825% 60
North Macedonia North Macedonia 0 -100% 168
Mali Mali 4,767 +3.92% 137
Malta Malta 61,117 +3.37% 26
Myanmar (Burma) Myanmar (Burma) 3,127 -0.439% 151
Montenegro Montenegro 20,015 +6.2% 72
Mongolia Mongolia 11,006 +7.77% 107
Mozambique Mozambique 2,878 -1.89% 156
Mauritania Mauritania 7,551 +1.53% 122
Mauritius Mauritius 23,219 +4.46% 59
Malawi Malawi 2,664 -2.46% 158
Malaysia Malaysia 21,109 +2.86% 64
Namibia Namibia 12,209 -0.662% 102
Niger Niger 2,291 -4.28% 163
Nigeria Nigeria 6,587 -1.54% 127
Nicaragua Nicaragua 4,363 +2.15% 142
Netherlands Netherlands 78,285 -1.03% 19
Norway Norway 108,913 +0.417% 6
Nepal Nepal 10,596 +0.753% 109
New Zealand New Zealand 69,931 -2.27% 24
Oman Oman 34,070 -4.95% 48
Pakistan Pakistan 7,333 -2.66% 123
Panama Panama 37,735 +3.91% 41
Peru Peru 11,704 -0.606% 104
Philippines Philippines 9,165 +4.02% 117
Papua New Guinea Papua New Guinea 6,575 +3.33% 128
Poland Poland 33,810 -2.11% 49
Portugal Portugal 42,825 +1.82% 33
Paraguay Paraguay 10,503 -0.749% 110
Qatar Qatar 74,475 +1.39% 23
Romania Romania 36,119 +4.53% 43
Russia Russia 18,349 +4.18% 78
Rwanda Rwanda 5,050 -2.71% 133
Saudi Arabia Saudi Arabia 38,132 -2.14% 40
Senegal Senegal 4,447 +0.133% 141
Singapore Singapore 90,800 -1.73% 11
Sierra Leone Sierra Leone 3,447 +0.763% 149
El Salvador El Salvador 10,193 +1.35% 112
Serbia Serbia 19,395 +5.54% 75
São Tomé & Príncipe São Tomé & Príncipe 11,685 -1.91% 105
Suriname Suriname 17,935 +0.988% 80
Slovakia Slovakia 40,549 +3.62% 35
Slovenia Slovenia 46,837 +3.6% 32
Sweden Sweden 89,034 +0.094% 12
Eswatini Eswatini 14,185 +4.75% 93
Chad Chad 3,933 -3.67% 144
Togo Togo 2,620 +3.28% 160
Thailand Thailand 13,926 +3.34% 98
Tajikistan Tajikistan 4,964 -2.61% 135
Timor-Leste Timor-Leste 3,669 +0.28% 146
Tonga Tonga 14,688 -2.23% 91
Trinidad & Tobago Trinidad & Tobago 31,911 +3.28% 53
Tunisia Tunisia 15,453 +3.85% 89
Turkey Turkey 39,582 +1.21% 36
Tanzania Tanzania 3,374 +2.64% 150
Uganda Uganda 3,515 +1.17% 148
Uruguay Uruguay 32,511 +1.72% 52
United States United States 126,307 +3.19% 4
Uzbekistan Uzbekistan 7,201 +5.34% 125
St. Vincent & Grenadines St. Vincent & Grenadines 19,607 +5.17% 73
Vietnam Vietnam 8,290 +6.64% 119
Samoa Samoa 20,582 +8.31% 69
South Africa South Africa 20,784 -6.08% 67
Zambia Zambia 7,294 +4.75% 124
Zimbabwe Zimbabwe 6,321 +1% 129

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'NV.SRV.EMPL.KD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'NV.SRV.EMPL.KD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))