Secondary income, other sectors, payments (BoP, current US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 289,012,157 -41.8% 78
Albania Albania 216,180,451 +20.1% 83
Argentina Argentina 1,172,326,761 +10.1% 49
Armenia Armenia 447,147,176 -2.59% 69
Antigua & Barbuda Antigua & Barbuda 149,070,712 -0.909% 89
Australia Australia 7,136,517,188 +9.29% 28
Austria Austria 7,705,508,171 +15.3% 27
Azerbaijan Azerbaijan 572,711,000 -3.66% 63
Belgium Belgium 26,811,714,084 +12.2% 10
Bangladesh Bangladesh 327,645,083 +7.52% 76
Bulgaria Bulgaria 873,630,000 +6.95% 59
Bahrain Bahrain 2,659,574,468 -0.14% 37
Bahamas Bahamas 287,450,548 +10.8% 79
Bosnia & Herzegovina Bosnia & Herzegovina 172,972,558 +24.6% 86
Belarus Belarus 1,040,234,754 +19.7% 54
Belize Belize 40,706,579 -23.4% 104
Brazil Brazil 10,499,104,899 +1.17% 21
Bhutan Bhutan 82,943,245 -1.65% 95
Canada Canada 12,908,787,831 -8.61% 16
Switzerland Switzerland 67,682,717,788 +6.48% 3
Chile Chile 4,453,230,413 -10.9% 32
China China 22,949,387,164 +2.79% 11
Colombia Colombia 1,581,824,661 +8.71% 46
Cape Verde Cape Verde 48,075,369 +7.49% 99
Costa Rica Costa Rica 781,724,845 +15% 60
Cyprus Cyprus 982,346,601 +0.759% 56
Czechia Czechia 4,611,670,109 -1.02% 31
Germany Germany 143,801,040,528 +8.87% 2
Djibouti Djibouti 18,158,765 +2.41% 108
Dominica Dominica 31,355,476 -3.87% 107
Denmark Denmark 3,789,759,985 +22.2% 34
Dominican Republic Dominican Republic 1,760,100,000 +10.6% 44
Ecuador Ecuador 1,153,724,474 -0.228% 50
Spain Spain 30,361,045,809 +8.96% 9
Estonia Estonia 329,962,807 +5.36% 75
Finland Finland 1,911,237,508 -18.9% 43
France France 65,587,200,179 +3.88% 4
United Kingdom United Kingdom 43,712,060,178 +5.65% 7
Georgia Georgia 155,524,908 -18.1% 88
Gambia Gambia 12,863,682 -48% 109
Greece Greece 2,087,500,240 +5.21% 41
Grenada Grenada 74,501,638 -1.83% 96
Guatemala Guatemala 322,508,670 +32.1% 77
Hong Kong SAR China Hong Kong SAR China 4,373,242,822 +7.37% 33
Honduras Honduras 380,018,694 -0.536% 71
Croatia Croatia 1,939,439,355 +79.9% 42
Hungary Hungary 2,638,719,572 +0.608% 38
Indonesia Indonesia 10,861,773,430 +10% 19
India India 11,128,631,503 -11.2% 18
Iceland Iceland 550,985,970 +13.9% 66
Israel Israel 7,813,300,000 +6.78% 25
Italy Italy 20,937,072,297 +5.46% 12
Jamaica Jamaica 229,502,840 -1.41% 82
Japan Japan 63,054,836,300 +17% 5
Kazakhstan Kazakhstan 1,068,344,613 -18.1% 52
Cambodia Cambodia 179,909,977 -15.8% 85
St. Kitts & Nevis St. Kitts & Nevis 44,564,433 +4.46% 101
South Korea South Korea 11,425,800,000 +2.65% 17
Kuwait Kuwait 14,380,125,637 +13.1% 14
St. Lucia St. Lucia 42,985,028 +1.72% 102
Lesotho Lesotho 382,111 +0.664% 110
Lithuania Lithuania 754,995,910 +14.3% 61
Luxembourg Luxembourg 10,848,275,902 +5.86% 20
Latvia Latvia 568,233,055 +16.6% 65
Moldova Moldova 495,400,000 +16.4% 68
Maldives Maldives 669,471,020 +5.67% 62
Mexico Mexico 1,377,173,182 +20.3% 47
North Macedonia North Macedonia 184,510,611 +12.5% 84
Malta Malta 890,753,125 -6.57% 58
Montenegro Montenegro 121,962,845 +17.8% 91
Mozambique Mozambique 136,208,545 +1.86% 90
Malaysia Malaysia 10,208,466,252 +5.05% 22
Namibia Namibia 103,437,921 +40.4% 93
Nigeria Nigeria 380,461,413 -6.08% 70
Nicaragua Nicaragua 162,600,000 +10.3% 87
Netherlands Netherlands 15,110,385,734 +29% 13
Norway Norway 9,306,019,615 +0.643% 23
Nepal Nepal 68,540,767 +0.559% 97
New Zealand New Zealand 2,233,796,318 +14.6% 40
Pakistan Pakistan 507,000,000 +34.8% 67
Panama Panama 1,051,984,295 +0.852% 53
Peru Peru 331,196,017 +3% 74
Philippines Philippines 1,153,346,398 +9.31% 51
Poland Poland 7,733,000,000 +8.02% 26
Portugal Portugal 5,474,240,118 +5.14% 30
Paraguay Paraguay 88,855,052 +2.14% 94
Palestinian Territories Palestinian Territories 230,731,344 -37.4% 81
Qatar Qatar 13,794,230,769 -9.97% 15
Romania Romania 3,323,605,161 +1.63% 35
Saudi Arabia Saudi Arabia 50,675,996,201 +21.6% 6
Singapore Singapore 37,369,895,477 +3.37% 8
Solomon Islands Solomon Islands 41,676,141 -13.3% 103
El Salvador El Salvador 348,189,812 -1.87% 73
Suriname Suriname 66,056,481 +0.421% 98
Slovakia Slovakia 1,175,413,380 +0.552% 48
Slovenia Slovenia 1,602,706,438 +3.99% 45
Sweden Sweden 8,877,314,547 +7.28% 24
Thailand Thailand 6,827,789,393 +13.9% 29
Tajikistan Tajikistan 568,522,015 +91.9% 64
Timor-Leste Timor-Leste 103,788,208 -43.9% 92
Tonga Tonga 37,638,781 -0.819% 105
Trinidad & Tobago Trinidad & Tobago 350,988,073 +3.32% 72
Turkey Turkey 3,032,000,000 +19.2% 36
Ukraine Ukraine 960,000,000 -12.6% 57
Uruguay Uruguay 249,847,836 -6.56% 80
United States United States 324,538,000,000 +9.27% 1
Uzbekistan Uzbekistan 1,004,693,560 +15.4% 55
St. Vincent & Grenadines St. Vincent & Grenadines 35,870,075 +7.79% 106
Samoa Samoa 46,353,728 +43.5% 100
South Africa South Africa 2,348,010,687 -2.98% 39

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'BM.TRF.PRVT.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'BM.TRF.PRVT.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))