Secondary education, duration (years)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 5 0% 5
Afghanistan Afghanistan 6 0% 4
Angola Angola 6 0% 4
Albania Albania 7 0% 3
Andorra Andorra 6 0% 4
United Arab Emirates United Arab Emirates 8 0% 2
Argentina Argentina 6 0% 4
Armenia Armenia 8 0% 2
American Samoa American Samoa 6 0% 4
Antigua & Barbuda Antigua & Barbuda 5 0% 5
Australia Australia 6 0% 4
Austria Austria 8 0% 2
Azerbaijan Azerbaijan 7 0% 3
Burundi Burundi 6 0% 4
Belgium Belgium 6 0% 4
Benin Benin 7 0% 3
Burkina Faso Burkina Faso 7 0% 3
Bangladesh Bangladesh 7 0% 3
Bulgaria Bulgaria 8 0% 2
Bahrain Bahrain 6 0% 4
Bahamas Bahamas 6 0% 4
Bosnia & Herzegovina Bosnia & Herzegovina 8 0% 2
Belarus Belarus 7 0% 3
Belize Belize 6 0% 4
Bermuda Bermuda 7 0% 3
Bolivia Bolivia 6 0% 4
Brazil Brazil 7 0% 3
Barbados Barbados 5 0% 5
Brunei Brunei 7 0% 3
Bhutan Bhutan 6 0% 4
Botswana Botswana 5 0% 5
Central African Republic Central African Republic 7 0% 3
Canada Canada 6 0% 4
Switzerland Switzerland 7 0% 3
Chile Chile 6 0% 4
China China 6 0% 4
Côte d’Ivoire Côte d’Ivoire 7 0% 3
Cameroon Cameroon 7 0% 3
Congo - Kinshasa Congo - Kinshasa 6 0% 4
Congo - Brazzaville Congo - Brazzaville 7 0% 3
Colombia Colombia 6 0% 4
Comoros Comoros 7 0% 3
Cape Verde Cape Verde 6 0% 4
Costa Rica Costa Rica 5 0% 5
Cuba Cuba 6 0% 4
Curaçao Curaçao 6 0% 4
Cayman Islands Cayman Islands 6 0% 4
Cyprus Cyprus 6 0% 4
Czechia Czechia 8 0% 2
Germany Germany 9 0% 1
Djibouti Djibouti 7 0% 3
Dominica Dominica 5 0% 5
Denmark Denmark 6 0% 4
Dominican Republic Dominican Republic 6 0% 4
Algeria Algeria 7 0% 3
Ecuador Ecuador 6 0% 4
Egypt Egypt 6 0% 4
Eritrea Eritrea 7 0% 3
Spain Spain 6 0% 4
Estonia Estonia 6 0% 4
Ethiopia Ethiopia 6 0% 4
Finland Finland 6 0% 4
Fiji Fiji 7 0% 3
France France 7 0% 3
Micronesia (Federated States of) Micronesia (Federated States of) 6 0% 4
Gabon Gabon 7 0% 3
United Kingdom United Kingdom 7 0% 3
Georgia Georgia 6 0% 4
Ghana Ghana 6 0% 4
Gibraltar Gibraltar 7 0% 3
Guinea Guinea 7 0% 3
Gambia Gambia 6 0% 4
Guinea-Bissau Guinea-Bissau 6 0% 4
Equatorial Guinea Equatorial Guinea 6 0% 4
Greece Greece 6 0% 4
Grenada Grenada 5 0% 5
Guatemala Guatemala 6 0% 4
Guyana Guyana 5 0% 5
Hong Kong SAR China Hong Kong SAR China 6 0% 4
Honduras Honduras 5 0% 5
Croatia Croatia 8 0% 2
Haiti Haiti 7 0% 3
Hungary Hungary 8 0% 2
Indonesia Indonesia 6 0% 4
India India 7 0% 3
Ireland Ireland 5 0% 5
Iran Iran 6 0% 4
Iraq Iraq 6 0% 4
Iceland Iceland 7 0% 3
Israel Israel 6 0% 4
Italy Italy 8 0% 2
Jamaica Jamaica 5 0% 5
Jordan Jordan 6 0% 4
Japan Japan 6 0% 4
Kazakhstan Kazakhstan 7 0% 3
Kenya Kenya 6 0% 4
Kyrgyzstan Kyrgyzstan 7 0% 3
Cambodia Cambodia 6 0% 4
Kiribati Kiribati 7 0% 3
St. Kitts & Nevis St. Kitts & Nevis 5 0% 5
South Korea South Korea 6 0% 4
Kuwait Kuwait 7 0% 3
Laos Laos 7 0% 3
Lebanon Lebanon 6 0% 4
Liberia Liberia 6 0% 4
Libya Libya 6 0% 4
St. Lucia St. Lucia 5 0% 5
Liechtenstein Liechtenstein 7 0% 3
Sri Lanka Sri Lanka 8 0% 2
Lesotho Lesotho 5 0% 5
Lithuania Lithuania 8 0% 2
Luxembourg Luxembourg 7 0% 3
Latvia Latvia 6 0% 4
Macao SAR China Macao SAR China 6 0% 4
Morocco Morocco 6 0% 4
Monaco Monaco 7 0% 3
Moldova Moldova 8 0% 2
Madagascar Madagascar 7 0% 3
Maldives Maldives 5 0% 5
Mexico Mexico 6 0% 4
Marshall Islands Marshall Islands 6 0% 4
North Macedonia North Macedonia 8 0% 2
Mali Mali 6 0% 4
Malta Malta 7 0% 3
Myanmar (Burma) Myanmar (Burma) 6 0% 4
Montenegro Montenegro 8 0% 2
Mongolia Mongolia 7 0% 3
Mozambique Mozambique 5 0% 5
Mauritania Mauritania 7 0% 3
Mauritius Mauritius 7 0% 3
Malawi Malawi 6 0% 4
Malaysia Malaysia 6 0% 4
Namibia Namibia 5 0% 5
New Caledonia New Caledonia 7 0% 3
Niger Niger 7 0% 3
Nigeria Nigeria 6 0% 4
Nicaragua Nicaragua 5 0% 5
Netherlands Netherlands 6 0% 4
Norway Norway 6 0% 4
Nepal Nepal 7 0% 3
Nauru Nauru 6 0% 4
New Zealand New Zealand 7 0% 3
Oman Oman 8 0% 2
Pakistan Pakistan 7 0% 3
Panama Panama 6 0% 4
Peru Peru 5 0% 5
Philippines Philippines 6 0% 4
Palau Palau 6 0% 4
Papua New Guinea Papua New Guinea 6 0% 4
Poland Poland 8 0% 2
Puerto Rico Puerto Rico 6 0% 4
North Korea North Korea 6 0% 4
Portugal Portugal 6 0% 4
Paraguay Paraguay 6 0% 4
Palestinian Territories Palestinian Territories 8 0% 2
French Polynesia French Polynesia 7 0% 3
Qatar Qatar 6 0% 4
Romania Romania 8 0% 2
Russia Russia 7 0% 3
Rwanda Rwanda 6 0% 4
Saudi Arabia Saudi Arabia 6 0% 4
Sudan Sudan 6 0% 4
Senegal Senegal 7 0% 3
Singapore Singapore 4 0% 6
Solomon Islands Solomon Islands 7 0% 3
Sierra Leone Sierra Leone 7 0% 3
El Salvador El Salvador 6 0% 4
San Marino San Marino 8 0% 2
Somalia Somalia 8 +33.3% 2
Serbia Serbia 8 0% 2
South Sudan South Sudan 6 0% 4
São Tomé & Príncipe São Tomé & Príncipe 6 0% 4
Suriname Suriname 7 0% 3
Slovakia Slovakia 9 0% 1
Slovenia Slovenia 7 0% 3
Sweden Sweden 6 0% 4
Eswatini Eswatini 5 0% 5
Sint Maarten Sint Maarten 5 0% 5
Seychelles Seychelles 7 0% 3
Syria Syria 6 0% 4
Turks & Caicos Islands Turks & Caicos Islands 5 0% 5
Chad Chad 7 0% 3
Togo Togo 7 0% 3
Thailand Thailand 6 0% 4
Tajikistan Tajikistan 7 0% 3
Turkmenistan Turkmenistan 8 0% 2
Timor-Leste Timor-Leste 6 0% 4
Tonga Tonga 7 0% 3
Trinidad & Tobago Trinidad & Tobago 5 0% 5
Tunisia Tunisia 7 0% 3
Turkey Turkey 8 0% 2
Tuvalu Tuvalu 7 0% 3
Tanzania Tanzania 6 0% 4
Uganda Uganda 6 0% 4
Ukraine Ukraine 7 0% 3
Uruguay Uruguay 6 0% 4
United States United States 6 0% 4
Uzbekistan Uzbekistan 8 0% 2
St. Vincent & Grenadines St. Vincent & Grenadines 5 0% 5
Venezuela Venezuela 5 0% 5
British Virgin Islands British Virgin Islands 6 0% 4
U.S. Virgin Islands U.S. Virgin Islands 6 0% 4
Vietnam Vietnam 7 0% 3
Vanuatu Vanuatu 7 0% 3
Samoa Samoa 7 0% 3
Yemen Yemen 6 0% 4
South Africa South Africa 5 0% 5
Zambia Zambia 5 0% 5
Zimbabwe Zimbabwe 6 0% 4

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.SEC.DURS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.SEC.DURS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))