School enrollment, primary, female (% gross)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Albania Albania 90.2 -3.15% 82
Andorra Andorra 97.5 +8.4% 56
United Arab Emirates United Arab Emirates 107 +14.8% 27
Armenia Armenia 93.4 +1.18% 71
Azerbaijan Azerbaijan 102 +2.15% 38
Burkina Faso Burkina Faso 73.5 -11.7% 100
Bangladesh Bangladesh 116 -5.44% 14
Bahrain Bahrain 94 +1.39% 67
Bahamas Bahamas 77.5 -17.2% 98
Bosnia & Herzegovina Bosnia & Herzegovina 87 -0.294% 88
Belarus Belarus 93.9 +1.18% 68
Belize Belize 96.4 -2.5% 60
Bermuda Bermuda 86.3 +0.81% 89
Bolivia Bolivia 98.9 -0.749% 48
Barbados Barbados 91.7 -2.45% 78
Brunei Brunei 93.9 -1.59% 69
China China 100 -0.742% 44
Côte d’Ivoire Côte d’Ivoire 99.4 +7.43% 47
Cameroon Cameroon 108 +2.05% 25
Congo - Kinshasa Congo - Kinshasa 117 -1.68% 13
Congo - Brazzaville Congo - Brazzaville 88 +1.88% 85
Comoros Comoros 91.6 +10.1% 79
Cuba Cuba 97.6 -1.53% 55
Curaçao Curaçao 107 -3.97% 26
Cayman Islands Cayman Islands 76.6 +0.0276% 99
Dominica Dominica 89.2 -1.09% 84
Dominican Republic Dominican Republic 93.2 -5.53% 72
Algeria Algeria 108 +0.77% 24
Ecuador Ecuador 98.6 -2.41% 50
Egypt Egypt 90.6 -1.32% 81
Ethiopia Ethiopia 81.5 -0.922% 95
Fiji Fiji 105 -0.319% 30
Georgia Georgia 103 -1.47% 32
Gibraltar Gibraltar 125 -3.01% 7
Gambia Gambia 100 +1.83% 43
Guatemala Guatemala 102 -0.544% 36
Guyana Guyana 98.5 -1.39% 52
Honduras Honduras 87.1 +0.604% 87
Indonesia Indonesia 98.7 -0.149% 49
India India 111 +0.53% 18
Jamaica Jamaica 84.5 -5.82% 91
Jordan Jordan 98.5 +0.378% 51
Kazakhstan Kazakhstan 101 -0.487% 41
Kyrgyzstan Kyrgyzstan 95.7 +2.28% 63
Cambodia Cambodia 110 -0.88% 20
Kiribati Kiribati 92.9 -5.9% 74
Laos Laos 95.9 -0.342% 62
Lebanon Lebanon 79 -3.72% 97
St. Lucia St. Lucia 101 -3.89% 42
Lesotho Lesotho 84.4 -2.48% 92
Macao SAR China Macao SAR China 87.5 +0.475% 86
Morocco Morocco 113 +0.384% 15
Madagascar Madagascar 138 -1.5% 4
Maldives Maldives 98.5 +2.42% 53
Mali Mali 70.9 +2.36% 101
Montenegro Montenegro 106 +0.699% 28
Mongolia Mongolia 96.3 +0.329% 61
Mozambique Mozambique 118 -0.235% 12
Mauritania Mauritania 112 +24.3% 17
Mauritius Mauritius 112 +10.8% 16
Malawi Malawi 137 +6.58% 5
Malaysia Malaysia 99.6 +2.06% 46
Niger Niger 66.5 +1.31% 102
Nicaragua Nicaragua 104 +0.528% 31
Nepal Nepal 121 +4.74% 10
Nauru Nauru 101 +4.47% 39
Oman Oman 96.4 +5.95% 59
Panama Panama 94.5 -6.2% 66
Peru Peru 108 -0.0132% 22
Philippines Philippines 93.1 +1.47% 73
Palau Palau 94.8 +9.02% 65
Puerto Rico Puerto Rico 83.2 -16.4% 94
Paraguay Paraguay 92 -0.787% 76
Palestinian Territories Palestinian Territories 91.8 +0.372% 77
Russia Russia 98 -3.02% 54
Rwanda Rwanda 150 +1.39% 3
Senegal Senegal 89.7 -0.487% 83
Solomon Islands Solomon Islands 84.6 -10.1% 90
Sierra Leone Sierra Leone 158 -2.42% 2
El Salvador El Salvador 91.2 +1.44% 80
San Marino San Marino 96.7 +1.87% 58
Somalia Somalia 19.2 +14.3% 104
Suriname Suriname 26.5 -72.1% 103
Eswatini Eswatini 110 -4.96% 21
Sint Maarten Sint Maarten 645 1
Seychelles Seychelles 97 -1.22% 57
Syria Syria 79.7 +7.19% 96
Turks & Caicos Islands Turks & Caicos Islands 124 +7.38% 8
Chad Chad 83.7 +2.37% 93
Togo Togo 119 -1.88% 11
Thailand Thailand 101 -2.73% 40
Tajikistan Tajikistan 100 -0.818% 45
Timor-Leste Timor-Leste 127 +2.6% 6
Tonga Tonga 103 -4.79% 33
Trinidad & Tobago Trinidad & Tobago 92.3 -4.15% 75
Tunisia Tunisia 102 -0.41% 34
Tuvalu Tuvalu 102 +5.04% 37
Tanzania Tanzania 95.5 +5.41% 64
Uzbekistan Uzbekistan 93.5 -0.206% 70
St. Vincent & Grenadines St. Vincent & Grenadines 110 -0.913% 19
Venezuela Venezuela 108 +15.6% 23
Vietnam Vietnam 124 -0.522% 9
Vanuatu Vanuatu 105 -3.19% 29
Samoa Samoa 102 -1.64% 35

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.PRM.ENRR.FE'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.PRM.ENRR.FE'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))