Rule of Law: Number of Sources

Source: worldbank.org, 19.12.2024

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 3 0% 14
Afghanistan Afghanistan 9 0% 8
Angola Angola 11 0% 6
Albania Albania 10 0% 7
Andorra Andorra 1 0% 16
United Arab Emirates United Arab Emirates 10 0% 7
Argentina Argentina 12 0% 5
Armenia Armenia 9 0% 8
American Samoa American Samoa 1 0% 16
Antigua & Barbuda Antigua & Barbuda 3 0% 14
Australia Australia 9 0% 8
Austria Austria 11 +10% 6
Azerbaijan Azerbaijan 8 0% 9
Burundi Burundi 9 0% 8
Belgium Belgium 10 0% 7
Benin Benin 13 0% 4
Burkina Faso Burkina Faso 13 0% 4
Bangladesh Bangladesh 13 +8.33% 4
Bulgaria Bulgaria 13 +8.33% 4
Bahrain Bahrain 9 0% 8
Bahamas Bahamas 6 +20% 11
Bosnia & Herzegovina Bosnia & Herzegovina 10 +11.1% 7
Belarus Belarus 8 0% 9
Belize Belize 5 +25% 12
Bermuda Bermuda 1 0% 16
Bolivia Bolivia 12 0% 5
Brazil Brazil 12 0% 5
Barbados Barbados 7 +16.7% 10
Brunei Brunei 4 0% 13
Bhutan Bhutan 8 0% 9
Botswana Botswana 12 +9.09% 5
Central African Republic Central African Republic 10 +11.1% 7
Canada Canada 10 0% 7
Switzerland Switzerland 8 0% 9
Chile Chile 12 0% 5
China China 10 0% 7
Côte d’Ivoire Côte d’Ivoire 15 +7.14% 2
Cameroon Cameroon 14 0% 3
Congo - Kinshasa Congo - Kinshasa 13 0% 4
Congo - Brazzaville Congo - Brazzaville 11 0% 6
Colombia Colombia 13 +8.33% 4
Comoros Comoros 8 0% 9
Cape Verde Cape Verde 9 0% 8
Costa Rica Costa Rica 12 +9.09% 5
Cuba Cuba 6 0% 11
Cayman Islands Cayman Islands 2 0% 15
Cyprus Cyprus 10 0% 7
Czechia Czechia 12 0% 5
Germany Germany 11 +10% 6
Djibouti Djibouti 9 0% 8
Dominica Dominica 3 0% 14
Denmark Denmark 10 0% 7
Dominican Republic Dominican Republic 11 0% 6
Algeria Algeria 10 +11.1% 7
Ecuador Ecuador 11 0% 6
Egypt Egypt 11 0% 6
Eritrea Eritrea 9 0% 8
Spain Spain 11 +10% 6
Estonia Estonia 13 +8.33% 4
Ethiopia Ethiopia 12 0% 5
Finland Finland 10 0% 7
Fiji Fiji 5 0% 12
France France 11 +10% 6
Micronesia (Federated States of) Micronesia (Federated States of) 4 0% 13
Gabon Gabon 10 0% 7
United Kingdom United Kingdom 9 0% 8
Georgia Georgia 10 +11.1% 7
Ghana Ghana 16 +14.3% 1
Guinea Guinea 13 0% 4
Gambia Gambia 14 +7.69% 3
Guinea-Bissau Guinea-Bissau 9 0% 8
Equatorial Guinea Equatorial Guinea 6 0% 11
Greece Greece 11 +10% 6
Grenada Grenada 4 +33.3% 13
Greenland Greenland 1 0% 16
Guatemala Guatemala 11 0% 6
Guam Guam 1 0% 16
Guyana Guyana 7 -12.5% 10
Hong Kong SAR China Hong Kong SAR China 10 +11.1% 7
Honduras Honduras 13 0% 4
Croatia Croatia 12 +9.09% 5
Haiti Haiti 9 -10% 8
Hungary Hungary 13 +8.33% 4
Indonesia Indonesia 12 +9.09% 5
India India 12 +9.09% 5
Ireland Ireland 10 0% 7
Iran Iran 9 +12.5% 8
Iraq Iraq 8 +14.3% 9
Iceland Iceland 8 0% 9
Israel Israel 8 0% 9
Italy Italy 10 0% 7
Jamaica Jamaica 10 +11.1% 7
Jordan Jordan 10 0% 7
Japan Japan 9 0% 8
Kazakhstan Kazakhstan 11 0% 6
Kenya Kenya 14 0% 3
Kyrgyzstan Kyrgyzstan 13 +8.33% 4
Cambodia Cambodia 12 +9.09% 5
Kiribati Kiribati 3 0% 14
St. Kitts & Nevis St. Kitts & Nevis 2 0% 15
South Korea South Korea 10 0% 7
Kuwait Kuwait 10 +11.1% 7
Laos Laos 10 0% 7
Lebanon Lebanon 8 0% 9
Liberia Liberia 14 +7.69% 3
Libya Libya 7 0% 10
St. Lucia St. Lucia 4 0% 13
Liechtenstein Liechtenstein 2 0% 15
Sri Lanka Sri Lanka 10 0% 7
Lesotho Lesotho 13 +8.33% 4
Lithuania Lithuania 12 0% 5
Luxembourg Luxembourg 10 0% 7
Latvia Latvia 12 0% 5
Macao SAR China Macao SAR China 3 0% 14
Morocco Morocco 13 +8.33% 4
Monaco Monaco 1 0% 16
Moldova Moldova 9 0% 8
Madagascar Madagascar 14 +7.69% 3
Maldives Maldives 5 0% 12
Mexico Mexico 13 +8.33% 4
Marshall Islands Marshall Islands 4 0% 13
North Macedonia North Macedonia 10 +11.1% 7
Mali Mali 14 0% 3
Malta Malta 9 0% 8
Myanmar (Burma) Myanmar (Burma) 9 0% 8
Montenegro Montenegro 10 +25% 7
Mongolia Mongolia 12 0% 5
Mozambique Mozambique 13 0% 4
Mauritania Mauritania 12 0% 5
Mauritius Mauritius 11 +10% 6
Malawi Malawi 14 0% 3
Malaysia Malaysia 10 0% 7
Namibia Namibia 10 0% 7
Niger Niger 13 0% 4
Nigeria Nigeria 14 +7.69% 3
Nicaragua Nicaragua 10 -9.09% 7
Netherlands Netherlands 10 0% 7
Norway Norway 8 0% 9
Nepal Nepal 12 +9.09% 5
Nauru Nauru 2 0% 15
New Zealand New Zealand 10 +11.1% 7
Oman Oman 7 +16.7% 10
Pakistan Pakistan 13 +8.33% 4
Panama Panama 11 0% 6
Peru Peru 13 +8.33% 4
Philippines Philippines 12 +9.09% 5
Palau Palau 3 0% 14
Papua New Guinea Papua New Guinea 9 0% 8
Poland Poland 12 0% 5
Puerto Rico Puerto Rico 4 +33.3% 13
North Korea North Korea 6 0% 11
Portugal Portugal 11 +10% 6
Paraguay Paraguay 12 +9.09% 5
Palestinian Territories Palestinian Territories 5 +25% 12
Qatar Qatar 8 0% 9
Romania Romania 13 +8.33% 4
Russia Russia 9 0% 8
Rwanda Rwanda 12 +9.09% 5
Saudi Arabia Saudi Arabia 10 +11.1% 7
Sudan Sudan 12 0% 5
Senegal Senegal 14 0% 3
Singapore Singapore 11 +10% 6
Solomon Islands Solomon Islands 6 0% 11
Sierra Leone Sierra Leone 15 +7.14% 2
El Salvador El Salvador 13 +8.33% 4
San Marino San Marino 1 0% 16
Somalia Somalia 8 0% 9
Serbia Serbia 10 0% 7
South Sudan South Sudan 8 0% 9
São Tomé & Príncipe São Tomé & Príncipe 8 0% 9
Suriname Suriname 7 +16.7% 10
Slovakia Slovakia 13 +8.33% 4
Slovenia Slovenia 12 0% 5
Sweden Sweden 10 0% 7
Eswatini Eswatini 9 0% 8
Seychelles Seychelles 6 +20% 11
Syria Syria 7 0% 10
Chad Chad 12 +9.09% 5
Togo Togo 14 +7.69% 3
Thailand Thailand 10 0% 7
Tajikistan Tajikistan 10 0% 7
Turkmenistan Turkmenistan 6 0% 11
Timor-Leste Timor-Leste 8 +14.3% 9
Tonga Tonga 4 0% 13
Trinidad & Tobago Trinidad & Tobago 9 +12.5% 8
Tunisia Tunisia 12 0% 5
Turkey Turkey 10 0% 7
Tuvalu Tuvalu 3 0% 14
Tanzania Tanzania 15 +7.14% 2
Uganda Uganda 13 0% 4
Ukraine Ukraine 10 0% 7
Uruguay Uruguay 11 0% 6
United States United States 10 0% 7
Uzbekistan Uzbekistan 12 0% 5
St. Vincent & Grenadines St. Vincent & Grenadines 4 0% 13
Venezuela Venezuela 11 0% 6
U.S. Virgin Islands U.S. Virgin Islands 1 0% 16
Vietnam Vietnam 11 +10% 6
Vanuatu Vanuatu 7 +16.7% 10
Samoa Samoa 4 +33.3% 13
Kosovo Kosovo 10 0% 7
Yemen Yemen 8 0% 9
South Africa South Africa 12 0% 5
Zambia Zambia 13 0% 4
Zimbabwe Zimbabwe 14 +7.69% 3

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'RL.NO.SRC'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'RL.NO.SRC'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))