Renewable internal freshwater resources, total (billion cubic meters)

Source: worldbank.org, 01.09.2025

Year: 2021

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 47.2 0% 77
Angola Angola 148 0% 43
Albania Albania 26.9 0% 93
Andorra Andorra 0.316 0% 158
United Arab Emirates United Arab Emirates 0.15 0% 161
Argentina Argentina 292 0% 26
Armenia Armenia 6.86 0% 129
Antigua & Barbuda Antigua & Barbuda 0.052 0% 165
Australia Australia 492 0% 16
Austria Austria 55 0% 72
Azerbaijan Azerbaijan 8.12 0% 126
Burundi Burundi 10.1 0% 120
Belgium Belgium 12 0% 114
Benin Benin 10.3 0% 119
Burkina Faso Burkina Faso 12.5 0% 112
Bangladesh Bangladesh 105 0% 55
Bulgaria Bulgaria 21 0% 97
Bahrain Bahrain 0.004 0% 170
Bahamas Bahamas 0.7 0% 154
Bosnia & Herzegovina Bosnia & Herzegovina 35.5 0% 86
Belarus Belarus 34 0% 89
Belize Belize 15.3 0% 106
Bolivia Bolivia 304 0% 25
Brazil Brazil 5,661 0% 1
Barbados Barbados 0.08 0% 163
Brunei Brunei 8.5 0% 123
Bhutan Bhutan 78 0% 62
Botswana Botswana 2.4 0% 143
Central African Republic Central African Republic 141 0% 45
Canada Canada 2,850 0% 3
Switzerland Switzerland 40.4 0% 81
Chile Chile 885 0% 12
China China 2,813 0% 5
Côte d’Ivoire Côte d’Ivoire 76.8 0% 63
Cameroon Cameroon 273 0% 27
Congo - Kinshasa Congo - Kinshasa 900 0% 11
Congo - Brazzaville Congo - Brazzaville 222 0% 32
Colombia Colombia 2,145 0% 6
Comoros Comoros 1.2 0% 149
Cape Verde Cape Verde 0.3 0% 159
Costa Rica Costa Rica 113 0% 51
Cuba Cuba 38.1 0% 83
Cyprus Cyprus 0.78 0% 152
Czechia Czechia 13.2 0% 108
Germany Germany 107 0% 54
Djibouti Djibouti 0.3 0% 159
Dominica Dominica 0.2 0% 160
Denmark Denmark 6 0% 131
Dominican Republic Dominican Republic 23.5 0% 96
Algeria Algeria 11.2 0% 116
Ecuador Ecuador 442 0% 18
Egypt Egypt 1 0% 150
Eritrea Eritrea 2.8 0% 140
Spain Spain 111 0% 52
Estonia Estonia 12.7 0% 110
Ethiopia Ethiopia 122 0% 48
Finland Finland 107 0% 54
Fiji Fiji 28.6 0% 92
France France 200 0% 34
Gabon Gabon 164 0% 40
United Kingdom United Kingdom 145 0% 44
Georgia Georgia 58.1 0% 69
Ghana Ghana 30.3 0% 90
Guinea Guinea 226 0% 30
Gambia Gambia 3 0% 139
Guinea-Bissau Guinea-Bissau 16 0% 103
Equatorial Guinea Equatorial Guinea 26 0% 94
Greece Greece 58 0% 70
Grenada Grenada 0.2 0% 160
Guatemala Guatemala 109 0% 53
Guyana Guyana 241 0% 28
Honduras Honduras 90.7 0% 59
Croatia Croatia 37.7 0% 85
Haiti Haiti 13 0% 109
Hungary Hungary 6 0% 131
Indonesia Indonesia 2,019 0% 7
India India 1,446 0% 9
Ireland Ireland 49 0% 75
Iran Iran 129 0% 47
Iraq Iraq 35.2 0% 87
Iceland Iceland 170 0% 39
Israel Israel 0.75 0% 153
Italy Italy 183 0% 37
Jamaica Jamaica 10.8 0% 118
Jordan Jordan 0.682 0% 155
Japan Japan 430 0% 19
Kazakhstan Kazakhstan 64.4 0% 66
Kenya Kenya 20.7 0% 98
Kyrgyzstan Kyrgyzstan 48.9 0% 76
Cambodia Cambodia 121 0% 49
St. Kitts & Nevis St. Kitts & Nevis 0.024 0% 168
South Korea South Korea 64.9 0% 65
Kuwait Kuwait 0 171
Laos Laos 190 0% 36
Lebanon Lebanon 4.8 0% 134
Liberia Liberia 200 0% 34
Libya Libya 0.7 0% 154
St. Lucia St. Lucia 0.3 0% 159
Sri Lanka Sri Lanka 52.8 0% 74
Lesotho Lesotho 5.23 0% 133
Lithuania Lithuania 15.5 0% 105
Luxembourg Luxembourg 1 0% 150
Latvia Latvia 16.9 0% 100
Morocco Morocco 29 0% 91
Moldova Moldova 1.62 0% 146
Madagascar Madagascar 337 0% 23
Maldives Maldives 0.03 0% 167
Mexico Mexico 409 0% 20
North Macedonia North Macedonia 5.4 0% 132
Mali Mali 60 0% 68
Malta Malta 0.0505 0% 166
Myanmar (Burma) Myanmar (Burma) 1,003 0% 10
Mongolia Mongolia 34.8 0% 88
Mozambique Mozambique 100 0% 56
Mauritania Mauritania 0.4 0% 157
Mauritius Mauritius 2.75 0% 141
Malawi Malawi 16.1 0% 102
Malaysia Malaysia 580 0% 15
Namibia Namibia 6.16 0% 130
Niger Niger 3.5 0% 138
Nigeria Nigeria 221 0% 33
Nicaragua Nicaragua 156 0% 42
Netherlands Netherlands 11 0% 117
Norway Norway 382 0% 21
Nepal Nepal 198 0% 35
Nauru Nauru 0.01 0% 169
New Zealand New Zealand 327 0% 24
Oman Oman 1.4 0% 148
Pakistan Pakistan 55 0% 72
Panama Panama 137 0% 46
Peru Peru 1,641 0% 8
Philippines Philippines 479 0% 17
Papua New Guinea Papua New Guinea 801 0% 14
Poland Poland 53.6 0% 73
Puerto Rico Puerto Rico 7.1 0% 128
North Korea North Korea 67 0% 64
Portugal Portugal 38 0% 84
Paraguay Paraguay 117 0% 50
Palestinian Territories Palestinian Territories 0.812 0% 151
Qatar Qatar 0.056 0% 164
Romania Romania 42.4 0% 80
Russia Russia 4,312 0% 2
Rwanda Rwanda 9.5 0% 122
Saudi Arabia Saudi Arabia 2.4 0% 143
Sudan Sudan 4 0% 136
Senegal Senegal 25.8 0% 95
Singapore Singapore 0.6 0% 156
Solomon Islands Solomon Islands 44.7 0% 79
Sierra Leone Sierra Leone 160 0% 41
El Salvador El Salvador 15.6 0% 104
Somalia Somalia 6 0% 131
Serbia Serbia 8.41 0% 124
South Sudan South Sudan 26 0% 94
São Tomé & Príncipe São Tomé & Príncipe 2.18 0% 144
Suriname Suriname 99 0% 57
Slovakia Slovakia 12.6 0% 111
Slovenia Slovenia 18.7 0% 99
Sweden Sweden 171 0% 38
Eswatini Eswatini 2.64 0% 142
Syria Syria 7.13 0% 127
Chad Chad 15 0% 107
Togo Togo 11.5 0% 115
Thailand Thailand 225 0% 31
Tajikistan Tajikistan 63.5 0% 67
Turkmenistan Turkmenistan 1.41 0% 147
Timor-Leste Timor-Leste 8.22 0% 125
Trinidad & Tobago Trinidad & Tobago 3.84 0% 137
Tunisia Tunisia 4.2 0% 135
Turkey Turkey 227 0% 29
Tanzania Tanzania 84 0% 60
Uganda Uganda 39 0% 82
Ukraine Ukraine 55.1 0% 71
Uruguay Uruguay 92.2 0% 58
United States United States 2,818 0% 4
Uzbekistan Uzbekistan 16.3 0% 101
St. Vincent & Grenadines St. Vincent & Grenadines 0.1 0% 162
Venezuela Venezuela 805 0% 13
Vietnam Vietnam 359 0% 22
Vanuatu Vanuatu 10 0% 121
Yemen Yemen 2.1 0% 145
South Africa South Africa 44.8 0% 78
Zambia Zambia 80.2 0% 61
Zimbabwe Zimbabwe 12.3 0% 113

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'ER.H2O.INTR.K3'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'ER.H2O.INTR.K3'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))