Regulatory Quality: Number of Sources

Source: worldbank.org, 19.12.2024

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 2 0% 11
Afghanistan Afghanistan 6 0% 7
Angola Angola 8 0% 5
Albania Albania 7 0% 6
Andorra Andorra 1 0% 12
United Arab Emirates United Arab Emirates 8 0% 5
Argentina Argentina 8 0% 5
Armenia Armenia 6 0% 7
American Samoa American Samoa 1 0% 12
Antigua & Barbuda Antigua & Barbuda 2 0% 11
Australia Australia 7 0% 6
Austria Austria 8 +14.3% 5
Azerbaijan Azerbaijan 5 0% 8
Burundi Burundi 7 0% 6
Belgium Belgium 7 0% 6
Benin Benin 9 0% 4
Burkina Faso Burkina Faso 9 0% 4
Bangladesh Bangladesh 11 +10% 2
Bulgaria Bulgaria 9 +12.5% 4
Bahrain Bahrain 7 0% 6
Bahamas Bahamas 5 0% 8
Bosnia & Herzegovina Bosnia & Herzegovina 7 +16.7% 6
Belarus Belarus 6 0% 7
Belize Belize 4 0% 9
Bermuda Bermuda 1 0% 12
Bolivia Bolivia 8 0% 5
Brazil Brazil 8 0% 5
Barbados Barbados 6 +20% 7
Brunei Brunei 4 0% 9
Bhutan Bhutan 7 0% 6
Botswana Botswana 9 +12.5% 4
Central African Republic Central African Republic 8 +14.3% 5
Canada Canada 7 0% 6
Switzerland Switzerland 6 0% 7
Chile Chile 8 0% 5
China China 8 0% 5
Côte d’Ivoire Côte d’Ivoire 11 +10% 2
Cameroon Cameroon 10 0% 3
Congo - Kinshasa Congo - Kinshasa 10 0% 3
Congo - Brazzaville Congo - Brazzaville 8 0% 5
Colombia Colombia 9 +12.5% 4
Comoros Comoros 5 0% 8
Cape Verde Cape Verde 6 0% 7
Costa Rica Costa Rica 8 +14.3% 5
Cuba Cuba 5 0% 8
Cayman Islands Cayman Islands 2 0% 11
Cyprus Cyprus 7 0% 6
Czechia Czechia 8 0% 5
Germany Germany 8 +14.3% 5
Djibouti Djibouti 7 0% 6
Dominica Dominica 4 0% 9
Denmark Denmark 7 0% 6
Dominican Republic Dominican Republic 7 0% 6
Algeria Algeria 7 +16.7% 6
Ecuador Ecuador 7 0% 6
Egypt Egypt 8 0% 5
Eritrea Eritrea 7 0% 6
Spain Spain 8 +14.3% 5
Estonia Estonia 9 +12.5% 4
Ethiopia Ethiopia 9 0% 4
Finland Finland 7 0% 6
Fiji Fiji 4 0% 9
France France 8 +14.3% 5
Micronesia (Federated States of) Micronesia (Federated States of) 4 0% 9
Gabon Gabon 6 0% 7
United Kingdom United Kingdom 7 0% 6
Georgia Georgia 7 +16.7% 6
Ghana Ghana 12 +20% 1
Guinea Guinea 9 0% 4
Gambia Gambia 10 +11.1% 3
Guinea-Bissau Guinea-Bissau 7 0% 6
Equatorial Guinea Equatorial Guinea 4 0% 9
Greece Greece 8 +14.3% 5
Grenada Grenada 3 0% 10
Greenland Greenland 1 0% 12
Guatemala Guatemala 7 0% 6
Guam Guam 1 0% 12
Guyana Guyana 6 0% 7
Hong Kong SAR China Hong Kong SAR China 7 +16.7% 6
Honduras Honduras 9 0% 4
Croatia Croatia 8 +14.3% 5
Haiti Haiti 8 0% 5
Hungary Hungary 9 +12.5% 4
Indonesia Indonesia 10 +11.1% 3
India India 10 +11.1% 3
Ireland Ireland 7 0% 6
Iran Iran 7 +16.7% 6
Iraq Iraq 5 +25% 8
Iceland Iceland 6 0% 7
Israel Israel 6 0% 7
Italy Italy 7 0% 6
Jamaica Jamaica 7 +16.7% 6
Jordan Jordan 8 0% 5
Japan Japan 7 0% 6
Kazakhstan Kazakhstan 8 0% 5
Kenya Kenya 10 0% 3
Kyrgyzstan Kyrgyzstan 10 +11.1% 3
Cambodia Cambodia 10 +11.1% 3
Kiribati Kiribati 4 0% 9
St. Kitts & Nevis St. Kitts & Nevis 2 0% 11
South Korea South Korea 8 0% 5
Kuwait Kuwait 8 +14.3% 5
Laos Laos 8 0% 5
Lebanon Lebanon 6 0% 7
Liberia Liberia 10 +11.1% 3
Libya Libya 4 0% 9
St. Lucia St. Lucia 4 0% 9
Liechtenstein Liechtenstein 3 0% 10
Sri Lanka Sri Lanka 8 0% 5
Lesotho Lesotho 9 +12.5% 4
Lithuania Lithuania 8 0% 5
Luxembourg Luxembourg 7 0% 6
Latvia Latvia 8 0% 5
Macao SAR China Macao SAR China 2 0% 11
Morocco Morocco 9 +12.5% 4
Monaco Monaco 1 0% 12
Moldova Moldova 6 0% 7
Madagascar Madagascar 10 +11.1% 3
Maldives Maldives 4 0% 9
Mexico Mexico 9 +12.5% 4
Marshall Islands Marshall Islands 3 0% 10
North Macedonia North Macedonia 7 +16.7% 6
Mali Mali 10 0% 3
Malta Malta 6 0% 7
Myanmar (Burma) Myanmar (Burma) 7 0% 6
Montenegro Montenegro 7 +40% 6
Mongolia Mongolia 10 0% 3
Mozambique Mozambique 9 0% 4
Mauritania Mauritania 8 0% 5
Mauritius Mauritius 7 +16.7% 6
Malawi Malawi 10 0% 3
Malaysia Malaysia 8 0% 5
Namibia Namibia 7 0% 6
Niger Niger 9 0% 4
Nigeria Nigeria 10 +11.1% 3
Nicaragua Nicaragua 7 0% 6
Netherlands Netherlands 7 0% 6
Norway Norway 6 0% 7
Nepal Nepal 10 +11.1% 3
Nauru Nauru 2 0% 11
New Zealand New Zealand 8 +14.3% 5
Oman Oman 6 +20% 7
Pakistan Pakistan 11 +10% 2
Panama Panama 7 0% 6
Peru Peru 9 +12.5% 4
Philippines Philippines 10 +11.1% 3
Palau Palau 2 0% 11
Papua New Guinea Papua New Guinea 8 0% 5
Poland Poland 8 0% 5
Puerto Rico Puerto Rico 3 +50% 10
North Korea North Korea 5 0% 8
Portugal Portugal 8 +14.3% 5
Paraguay Paraguay 8 +14.3% 5
Palestinian Territories Palestinian Territories 3 +50% 10
Qatar Qatar 7 0% 6
Romania Romania 9 +12.5% 4
Russia Russia 6 0% 7
Rwanda Rwanda 10 +11.1% 3
Saudi Arabia Saudi Arabia 8 +14.3% 5
Sudan Sudan 9 0% 4
Senegal Senegal 10 0% 3
Singapore Singapore 9 +12.5% 4
Solomon Islands Solomon Islands 5 0% 8
Sierra Leone Sierra Leone 11 +10% 2
El Salvador El Salvador 9 +12.5% 4
San Marino San Marino 1 0% 12
Somalia Somalia 6 0% 7
Serbia Serbia 7 0% 6
South Sudan South Sudan 5 0% 8
São Tomé & Príncipe São Tomé & Príncipe 6 0% 7
Suriname Suriname 5 0% 8
Slovakia Slovakia 9 +12.5% 4
Slovenia Slovenia 8 0% 5
Sweden Sweden 7 0% 6
Eswatini Eswatini 5 0% 8
Seychelles Seychelles 4 +33.3% 9
Syria Syria 5 0% 8
Chad Chad 9 +12.5% 4
Togo Togo 10 +11.1% 3
Thailand Thailand 8 0% 5
Tajikistan Tajikistan 7 0% 6
Turkmenistan Turkmenistan 4 0% 9
Timor-Leste Timor-Leste 7 +16.7% 6
Tonga Tonga 4 0% 9
Trinidad & Tobago Trinidad & Tobago 7 0% 6
Tunisia Tunisia 8 0% 5
Turkey Turkey 8 0% 5
Tuvalu Tuvalu 3 0% 10
Tanzania Tanzania 11 +10% 2
Uganda Uganda 9 0% 4
Ukraine Ukraine 6 0% 7
Uruguay Uruguay 7 0% 6
United States United States 7 0% 6
Uzbekistan Uzbekistan 9 0% 4
St. Vincent & Grenadines St. Vincent & Grenadines 4 0% 9
Venezuela Venezuela 8 0% 5
U.S. Virgin Islands U.S. Virgin Islands 1 0% 12
Vietnam Vietnam 9 +12.5% 4
Vanuatu Vanuatu 6 +20% 7
Samoa Samoa 5 +25% 8
Kosovo Kosovo 7 0% 6
Yemen Yemen 6 0% 7
South Africa South Africa 8 0% 5
Zambia Zambia 9 0% 4
Zimbabwe Zimbabwe 10 +11.1% 3

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'RQ.NO.SRC'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'RQ.NO.SRC'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))