Proportion of seats held by women in national parliaments (%)

Source: worldbank.org, 01.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 39.5 +17.6% 25
Albania Albania 35.7 0% 42
Andorra Andorra 50 0% 5
United Arab Emirates United Arab Emirates 50 0% 5
Argentina Argentina 42.4 -1.8% 18
Armenia Armenia 36.4 +2.63% 39
Antigua & Barbuda Antigua & Barbuda 5.56 0% 161
Australia Australia 38 -1.07% 34
Austria Austria 36.1 -12% 40
Azerbaijan Azerbaijan 20.8 +11.6% 108
Burundi Burundi 38.2 0% 33
Belgium Belgium 41.3 -3.13% 19
Benin Benin 26.6 0% 84
Burkina Faso Burkina Faso 18.3 +8.33% 122
Bulgaria Bulgaria 20.8 -13.8% 107
Bahrain Bahrain 20 0% 111
Bahamas Bahamas 17.9 0% 123
Bosnia & Herzegovina Bosnia & Herzegovina 19 0.000000% 120
Belarus Belarus 33.6 -15.9% 49
Belize Belize 15.6 0% 133
Bolivia Bolivia 46.2 0% 8
Brazil Brazil 17.5 0% 125
Barbados Barbados 26.7 0% 83
Brunei Brunei 11.8 0% 147
Bhutan Bhutan 4.26 -75.5% 164
Botswana Botswana 8.7 -21.7% 156
Central African Republic Central African Republic 11.4 -11.1% 148
Canada Canada 30.7 0% 61
Switzerland Switzerland 38.5 0% 31
Chile Chile 35.5 0% 43
China China 26.5 0% 85
Côte d’Ivoire Côte d’Ivoire 13.4 -2.47% 143
Cameroon Cameroon 33.9 0% 48
Congo - Kinshasa Congo - Kinshasa 13 +1.55% 144
Congo - Brazzaville Congo - Brazzaville 14.6 0% 137
Colombia Colombia 29.4 +1.85% 67
Comoros Comoros 16.7 0% 127
Cape Verde Cape Verde 38.9 -6.67% 29
Costa Rica Costa Rica 49.1 +3.7% 6
Cuba Cuba 55.7 0% 2
Cyprus Cyprus 14.3 0% 139
Czechia Czechia 26 0% 88
Germany Germany 35.3 +0.386% 45
Djibouti Djibouti 26.2 0% 86
Dominica Dominica 37.5 0% 36
Denmark Denmark 45.3 +3.85% 13
Dominican Republic Dominican Republic 36.8 +32.1% 38
Algeria Algeria 7.86 0% 157
Ecuador Ecuador 43.1 0% 17
Egypt Egypt 27.7 +0.613% 77
Spain Spain 44.3 0% 16
Estonia Estonia 29.7 +3.45% 63
Ethiopia Ethiopia 41.3 0% 20
Finland Finland 46 0% 10
Fiji Fiji 9.09 -16.7% 155
France France 36 -4.59% 41
Micronesia (Federated States of) Micronesia (Federated States of) 15.4 +7.69% 134
Gabon Gabon 25.5 +4.17% 90
United Kingdom United Kingdom 40.5 +16.9% 24
Georgia Georgia 22.7 +22.9% 99
Ghana Ghana 14.5 0% 138
Guinea Guinea 29.6 0% 64
Guinea-Bissau Guinea-Bissau 9.8 0% 153
Equatorial Guinea Equatorial Guinea 32 +3.23% 56
Greece Greece 23 0% 98
Grenada Grenada 31.3 0% 59
Guatemala Guatemala 20 0% 111
Guyana Guyana 39.4 +7.69% 26
Honduras Honduras 27.3 0% 79
Croatia Croatia 33.1 +4.17% 51
Hungary Hungary 14.6 +3.57% 136
Indonesia Indonesia 21 -2.46% 106
India India 13.7 -10.4% 140
Ireland Ireland 25.3 +9.35% 92
Iran Iran 4.83 -13.7% 162
Iraq Iraq 28.9 -0.608% 69
Iceland Iceland 46 -3.33% 9
Israel Israel 25 +3.45% 93
Italy Italy 32.3 0% 55
Jamaica Jamaica 27.4 -4.03% 78
Jordan Jordan 19.6 +59% 115
Japan Japan 15.7 +51.8% 131
Kazakhstan Kazakhstan 19.4 +5.56% 118
Kenya Kenya 23.3 0% 97
Kyrgyzstan Kyrgyzstan 21.1 +5.56% 104
Cambodia Cambodia 13.6 0% 141
Kiribati Kiribati 11.1 +66.7% 149
St. Kitts & Nevis St. Kitts & Nevis 31.3 0% 59
South Korea South Korea 20 +4.91% 111
Laos Laos 22 0% 100
Lebanon Lebanon 6.25 0% 159
Liberia Liberia 11 0% 150
Libya Libya 16.5 0% 128
St. Lucia St. Lucia 11.1 0% 149
Liechtenstein Liechtenstein 28 0% 75
Sri Lanka Sri Lanka 10 +87.5% 152
Lesotho Lesotho 25 -5.47% 93
Lithuania Lithuania 28.4 0% 72
Luxembourg Luxembourg 33.3 0% 50
Latvia Latvia 32 0% 56
Morocco Morocco 24.3 0% 94
Monaco Monaco 45.8 0% 11
Moldova Moldova 40.8 +5.7% 22
Madagascar Madagascar 16 -14% 130
Maldives Maldives 3.23 -29.8% 166
Mexico Mexico 50.2 +0.4% 4
Marshall Islands Marshall Islands 12.1 0% 146
North Macedonia North Macedonia 39.2 -7.84% 28
Mali Mali 30.7 +7.3% 60
Malta Malta 27.8 0% 76
Montenegro Montenegro 27.2 +29.4% 81
Mongolia Mongolia 25.4 +48.5% 91
Mozambique Mozambique 39.2 -9.26% 27
Mauritania Mauritania 23.3 0% 96
Mauritius Mauritius 19.4 -2.99% 116
Malawi Malawi 20.7 0% 109
Malaysia Malaysia 13.5 0% 142
Namibia Namibia 40.6 -8.15% 23
Nigeria Nigeria 3.91 0% 165
Nicaragua Nicaragua 53.8 +4.26% 3
Netherlands Netherlands 38.7 -3.33% 30
Norway Norway 44.4 -3.85% 15
Nepal Nepal 33.1 0% 52
Nauru Nauru 10.5 0% 151
New Zealand New Zealand 45.5 +2.86% 12
Oman Oman 0 169
Pakistan Pakistan 17 -16.7% 126
Panama Panama 21.4 -4.91% 103
Peru Peru 38.5 -0.769% 32
Philippines Philippines 27.3 0% 80
Palau Palau 25 +300% 93
Papua New Guinea Papua New Guinea 2.7 0% 167
Poland Poland 29.6 +0.741% 65
North Korea North Korea 17.6 0% 124
Portugal Portugal 32.6 -9.64% 53
Paraguay Paraguay 23.8 +5.56% 95
Qatar Qatar 4.44 0% 163
Romania Romania 19.2 +0.61% 119
Russia Russia 16.4 0.000000% 129
Rwanda Rwanda 63.8 +4.08% 1
Saudi Arabia Saudi Arabia 19.9 0% 112
Senegal Senegal 41.2 -10.5% 21
Singapore Singapore 29.3 +0.572% 68
Solomon Islands Solomon Islands 6 -25% 160
Sierra Leone Sierra Leone 29.5 +4.76% 66
El Salvador El Salvador 31.7 +15.7% 57
San Marino San Marino 35 +5% 46
Somalia Somalia 19.6 -0.364% 114
Serbia Serbia 38 +9.2% 34
South Sudan South Sudan 32.4 0% 54
São Tomé & Príncipe São Tomé & Príncipe 14.5 0% 138
Suriname Suriname 31.4 +6.67% 58
Slovakia Slovakia 22.7 +3.03% 99
Slovenia Slovenia 37.8 0% 35
Sweden Sweden 46.7 +0.617% 7
Eswatini Eswatini 21.6 +26.1% 102
Seychelles Seychelles 20.6 -9.93% 110
Syria Syria 9.6 -11.1% 154
Chad Chad 26.1 +0.85% 87
Togo Togo 18.6 -6.05% 121
Thailand Thailand 19.4 +2.99% 117
Tajikistan Tajikistan 27 0% 82
Turkmenistan Turkmenistan 25.6 0% 89
Timor-Leste Timor-Leste 35.4 -4.17% 44
Tonga Tonga 7.14 0% 158
Trinidad & Tobago Trinidad & Tobago 28.6 0% 71
Tunisia Tunisia 15.7 -3.37% 132
Turkey Turkey 19.9 +0.167% 113
Tuvalu Tuvalu 0 -100% 169
Tanzania Tanzania 37.4 0% 37
Uganda Uganda 33.9 +0.351% 47
Ukraine Ukraine 21.1 +3.23% 105
Uruguay Uruguay 28.3 +7.69% 73
United States United States 28.7 -0.794% 70
Uzbekistan Uzbekistan 38 +13.2% 34
St. Vincent & Grenadines St. Vincent & Grenadines 21.7 +19.6% 101
Vietnam Vietnam 30.6 +1.22% 62
Vanuatu Vanuatu 1.96 +1.96% 168
Samoa Samoa 13 0% 145
Yemen Yemen 0 169
South Africa South Africa 44.7 -2.53% 14
Zambia Zambia 15 0% 135
Zimbabwe Zimbabwe 28.1 -8.45% 74

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SG.GEN.PARL.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SG.GEN.PARL.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))