Probability of dying among youth ages 20-24 years (per 1,000)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 16.9 -0.588% 11
Angola Angola 16.9 -2.31% 11
Albania Albania 1.9 -13.6% 96
Andorra Andorra 1.8 0% 97
United Arab Emirates United Arab Emirates 2.5 0% 90
Argentina Argentina 4.4 0% 73
Armenia Armenia 3.4 -15% 83
Antigua & Barbuda Antigua & Barbuda 3 0% 87
Australia Australia 2 -4.76% 95
Austria Austria 2 +5.26% 95
Azerbaijan Azerbaijan 4 -4.76% 77
Burundi Burundi 8.3 -1.19% 41
Belgium Belgium 1.6 -5.88% 99
Benin Benin 10.5 -0.943% 30
Burkina Faso Burkina Faso 11.1 +18.1% 28
Bangladesh Bangladesh 4.4 -2.22% 73
Bulgaria Bulgaria 3.2 0% 85
Bahrain Bahrain 2.1 -4.55% 94
Bahamas Bahamas 7 -4.11% 51
Bosnia & Herzegovina Bosnia & Herzegovina 2 -4.76% 95
Belarus Belarus 2.2 0% 93
Belize Belize 9.5 +1.06% 35
Bolivia Bolivia 4.9 -2% 69
Brazil Brazil 8.1 0% 43
Barbados Barbados 3.4 0% 83
Brunei Brunei 2.7 0% 89
Bhutan Bhutan 6.5 -2.99% 55
Botswana Botswana 9.3 -1.06% 36
Central African Republic Central African Republic 22.7 -91.6% 3
Canada Canada 3.2 0% 85
Switzerland Switzerland 1.5 0% 100
Chile Chile 3.5 +2.94% 82
China China 2.4 0% 91
Côte d’Ivoire Côte d’Ivoire 8.5 -1.16% 40
Cameroon Cameroon 16.6 -1.19% 12
Congo - Kinshasa Congo - Kinshasa 18.3 -0.543% 6
Congo - Brazzaville Congo - Brazzaville 10.1 -1.94% 32
Colombia Colombia 7.9 +1.28% 45
Comoros Comoros 4 -2.44% 77
Cape Verde Cape Verde 2.7 -3.57% 89
Costa Rica Costa Rica 5.2 +6.12% 66
Cuba Cuba 3.3 +6.45% 84
Cyprus Cyprus 2 +5.26% 95
Czechia Czechia 2.2 -4.35% 93
Germany Germany 1.5 0% 100
Djibouti Djibouti 14.6 -2.01% 17
Dominica Dominica 7.4 0% 48
Denmark Denmark 1.5 0% 100
Dominican Republic Dominican Republic 7.8 -1.27% 46
Algeria Algeria 3.4 +3.03% 83
Ecuador Ecuador 11.4 +22.6% 26
Egypt Egypt 4.4 +2.33% 73
Eritrea Eritrea 11.8 -2.48% 25
Spain Spain 1.5 +7.14% 100
Estonia Estonia 2.4 0% 91
Ethiopia Ethiopia 8.1 0% 43
Finland Finland 3.2 +3.23% 85
Fiji Fiji 6 0% 58
France France 2 0% 95
Micronesia (Federated States of) Micronesia (Federated States of) 6 -1.64% 58
Gabon Gabon 6 0% 58
United Kingdom United Kingdom 2 +5.26% 95
Georgia Georgia 3.7 -7.5% 80
Ghana Ghana 7.2 -1.37% 50
Guinea Guinea 17.6 -1.12% 9
Gambia Gambia 9.9 -1.98% 33
Guinea-Bissau Guinea-Bissau 12.8 -2.29% 23
Equatorial Guinea Equatorial Guinea 13 -2.26% 22
Greece Greece 1.7 0% 98
Grenada Grenada 2.5 0% 90
Guatemala Guatemala 8 +1.27% 44
Guyana Guyana 7.3 -1.35% 49
Honduras Honduras 5.8 -1.69% 60
Croatia Croatia 2 -13% 95
Haiti Haiti 12.1 +12% 24
Hungary Hungary 2.1 0% 94
Indonesia Indonesia 4.9 -2% 69
India India 4.6 -2.13% 71
Ireland Ireland 1.6 0% 99
Iran Iran 5.8 -1.69% 60
Iraq Iraq 4.2 -2.33% 75
Iceland Iceland 1.2 -7.69% 103
Israel Israel 1.8 +5.88% 97
Italy Italy 1.4 0% 101
Jamaica Jamaica 7.4 +1.37% 48
Jordan Jordan 3.5 -2.78% 82
Japan Japan 1.9 +5.56% 96
Kazakhstan Kazakhstan 3.8 -5% 79
Kenya Kenya 9.1 -1.09% 38
Kyrgyzstan Kyrgyzstan 3.4 -2.86% 83
Cambodia Cambodia 4.6 -2.13% 71
Kiribati Kiribati 9.2 -1.08% 37
St. Kitts & Nevis St. Kitts & Nevis 10.3 -0.962% 31
South Korea South Korea 1.8 0% 97
Kuwait Kuwait 2.2 -4.35% 93
Laos Laos 6.9 -1.43% 52
Lebanon Lebanon 4 +2.56% 77
Liberia Liberia 14.9 -1.32% 16
Libya Libya 6.7 +109% 53
St. Lucia St. Lucia 8.2 +1.23% 42
Sri Lanka Sri Lanka 2.4 0% 91
Lesotho Lesotho 6.6 -8.33% 54
Lithuania Lithuania 2.9 -3.33% 88
Luxembourg Luxembourg 0.9 -10% 104
Latvia Latvia 3.1 -3.13% 86
Morocco Morocco 3.1 +6.9% 86
Monaco Monaco 1.9 0% 96
Moldova Moldova 4.3 +2.38% 74
Madagascar Madagascar 9.3 -2.11% 36
Maldives Maldives 1.3 -7.14% 102
Mexico Mexico 6.5 -4.41% 55
Marshall Islands Marshall Islands 6.6 -1.49% 54
North Macedonia North Macedonia 2.3 +4.55% 92
Mali Mali 13 -2.26% 22
Malta Malta 1.6 0% 99
Myanmar (Burma) Myanmar (Burma) 7.8 -7.14% 46
Montenegro Montenegro 2.5 +4.17% 90
Mongolia Mongolia 4.9 -2% 69
Mozambique Mozambique 11.1 -1.77% 28
Mauritania Mauritania 7.7 0% 47
Mauritius Mauritius 4.5 -2.17% 72
Malawi Malawi 10.6 -0.935% 29
Malaysia Malaysia 3.6 +2.86% 81
Namibia Namibia 11.8 -4.07% 25
Niger Niger 15.6 -1.27% 14
Nigeria Nigeria 9.8 -1.01% 34
Nicaragua Nicaragua 5.4 -1.82% 64
Netherlands Netherlands 1.5 0% 100
Norway Norway 1.9 0% 96
Nepal Nepal 5.6 0% 62
Nauru Nauru 3.7 -2.63% 80
New Zealand New Zealand 2.7 0% 89
Oman Oman 3.2 0% 85
Pakistan Pakistan 6.3 0% 56
Panama Panama 5.9 -1.67% 59
Peru Peru 4.2 -2.33% 75
Philippines Philippines 6.1 +1.67% 57
Palau Palau 20.6 -0.962% 5
Papua New Guinea Papua New Guinea 7.9 -1.25% 45
Poland Poland 2.9 -3.33% 88
North Korea North Korea 5.2 0% 66
Portugal Portugal 1.9 +5.56% 96
Paraguay Paraguay 6.1 -1.61% 57
Palestinian Territories Palestinian Territories 34.2 +850% 1
Qatar Qatar 1.8 +5.88% 97
Romania Romania 2.5 -7.41% 90
Russia Russia 9.8 +36.1% 34
Rwanda Rwanda 5.5 -3.51% 63
Saudi Arabia Saudi Arabia 5 0% 68
Sudan Sudan 17.5 +17.4% 10
Senegal Senegal 5.1 -1.92% 67
Singapore Singapore 1.4 +7.69% 101
Solomon Islands Solomon Islands 5.6 -1.75% 62
Sierra Leone Sierra Leone 18.1 -0.549% 8
El Salvador El Salvador 5.9 -3.28% 59
San Marino San Marino 1.2 0% 103
Somalia Somalia 28.4 -7.19% 2
Serbia Serbia 2.3 -4.17% 92
South Sudan South Sudan 22.2 0% 4
São Tomé & Príncipe São Tomé & Príncipe 11.8 -0.84% 25
Suriname Suriname 5.7 -1.72% 61
Slovakia Slovakia 2.2 -4.35% 93
Slovenia Slovenia 1.4 -6.67% 101
Sweden Sweden 2.1 0% 94
Eswatini Eswatini 13.1 -1.5% 21
Seychelles Seychelles 3.8 -2.56% 79
Syria Syria 5.7 +16.3% 61
Turks & Caicos Islands Turks & Caicos Islands 3.5 0% 82
Chad Chad 18.2 -1.09% 7
Togo Togo 9.5 -1.04% 35
Thailand Thailand 6.7 0% 53
Tajikistan Tajikistan 2.5 0% 90
Turkmenistan Turkmenistan 5.1 -1.92% 67
Timor-Leste Timor-Leste 15.3 -1.29% 15
Tonga Tonga 5.4 -1.82% 64
Trinidad & Tobago Trinidad & Tobago 9 +12.5% 39
Tunisia Tunisia 3.5 0% 82
Turkey Turkey 4.5 +80% 72
Tuvalu Tuvalu 5.5 -1.79% 63
Tanzania Tanzania 6.6 -1.49% 54
Uganda Uganda 13.4 -0.741% 20
Ukraine Ukraine 13.5 0% 19
Uruguay Uruguay 6 +1.69% 58
United States United States 4.8 -7.69% 70
Uzbekistan Uzbekistan 4.1 +5.13% 76
St. Vincent & Grenadines St. Vincent & Grenadines 6 -1.64% 58
Venezuela Venezuela 16.3 +0.617% 13
British Virgin Islands British Virgin Islands 5.3 -1.85% 65
Vietnam Vietnam 3.3 0% 84
Vanuatu Vanuatu 5.1 0% 67
Samoa Samoa 3.9 -2.5% 78
Kosovo Kosovo 3.5 0% 82
Yemen Yemen 6.1 -14.1% 57
South Africa South Africa 13.1 0% 21
Zambia Zambia 11.2 -1.75% 27
Zimbabwe Zimbabwe 13.9 -1.42% 18

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.DYN.2024'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.DYN.2024'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))