Primary school starting age (years)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 6 0% 2
Afghanistan Afghanistan 7 0% 1
Angola Angola 6 0% 2
Albania Albania 6 0% 2
Andorra Andorra 6 0% 2
United Arab Emirates United Arab Emirates 6 0% 2
Argentina Argentina 6 0% 2
Armenia Armenia 6 0% 2
American Samoa American Samoa 6 0% 2
Antigua & Barbuda Antigua & Barbuda 5 0% 3
Australia Australia 5 0% 3
Austria Austria 6 0% 2
Azerbaijan Azerbaijan 6 0% 2
Burundi Burundi 7 0% 1
Belgium Belgium 6 0% 2
Benin Benin 6 0% 2
Burkina Faso Burkina Faso 6 0% 2
Bangladesh Bangladesh 6 0% 2
Bulgaria Bulgaria 7 0% 1
Bahrain Bahrain 6 0% 2
Bahamas Bahamas 5 0% 3
Bosnia & Herzegovina Bosnia & Herzegovina 6 0% 2
Belarus Belarus 6 0% 2
Belize Belize 5 0% 3
Bermuda Bermuda 5 0% 3
Bolivia Bolivia 6 0% 2
Brazil Brazil 6 0% 2
Barbados Barbados 5 0% 3
Brunei Brunei 6 0% 2
Bhutan Bhutan 6 +20% 2
Botswana Botswana 6 0% 2
Central African Republic Central African Republic 6 0% 2
Canada Canada 6 0% 2
Switzerland Switzerland 6 0% 2
Chile Chile 6 0% 2
China China 6 0% 2
Côte d’Ivoire Côte d’Ivoire 6 0% 2
Cameroon Cameroon 6 0% 2
Congo - Kinshasa Congo - Kinshasa 6 0% 2
Congo - Brazzaville Congo - Brazzaville 6 0% 2
Colombia Colombia 6 0% 2
Comoros Comoros 6 0% 2
Cape Verde Cape Verde 6 0% 2
Costa Rica Costa Rica 6 0% 2
Cuba Cuba 6 0% 2
Curaçao Curaçao 6 0% 2
Cayman Islands Cayman Islands 5 0% 3
Cyprus Cyprus 6 0% 2
Czechia Czechia 6 0% 2
Germany Germany 6 0% 2
Djibouti Djibouti 6 0% 2
Dominica Dominica 5 0% 3
Denmark Denmark 6 0% 2
Dominican Republic Dominican Republic 6 0% 2
Algeria Algeria 6 0% 2
Ecuador Ecuador 6 0% 2
Egypt Egypt 6 0% 2
Eritrea Eritrea 6 0% 2
Spain Spain 6 0% 2
Estonia Estonia 7 0% 1
Ethiopia Ethiopia 7 0% 1
Finland Finland 7 0% 1
Fiji Fiji 6 0% 2
France France 6 0% 2
Micronesia (Federated States of) Micronesia (Federated States of) 6 0% 2
Gabon Gabon 6 0% 2
United Kingdom United Kingdom 5 0% 3
Georgia Georgia 6 0% 2
Ghana Ghana 6 0% 2
Gibraltar Gibraltar 5 0% 3
Guinea Guinea 7 0% 1
Gambia Gambia 7 0% 1
Guinea-Bissau Guinea-Bissau 6 0% 2
Equatorial Guinea Equatorial Guinea 7 0% 1
Greece Greece 6 0% 2
Grenada Grenada 5 0% 3
Guatemala Guatemala 7 0% 1
Guam Guam 6 0% 2
Guyana Guyana 6 0% 2
Hong Kong SAR China Hong Kong SAR China 6 0% 2
Honduras Honduras 6 0% 2
Croatia Croatia 7 0% 1
Haiti Haiti 6 0% 2
Hungary Hungary 7 0% 1
Indonesia Indonesia 7 0% 1
India India 6 0% 2
Ireland Ireland 5 0% 3
Iran Iran 6 0% 2
Iraq Iraq 6 0% 2
Iceland Iceland 6 0% 2
Israel Israel 6 0% 2
Italy Italy 6 0% 2
Jamaica Jamaica 6 0% 2
Jordan Jordan 6 0% 2
Japan Japan 6 0% 2
Kazakhstan Kazakhstan 6 0% 2
Kenya Kenya 6 0% 2
Kyrgyzstan Kyrgyzstan 7 0% 1
Cambodia Cambodia 6 0% 2
Kiribati Kiribati 6 0% 2
St. Kitts & Nevis St. Kitts & Nevis 5 0% 3
South Korea South Korea 6 0% 2
Kuwait Kuwait 6 0% 2
Laos Laos 6 0% 2
Lebanon Lebanon 6 0% 2
Liberia Liberia 6 0% 2
Libya Libya 6 0% 2
St. Lucia St. Lucia 5 0% 3
Liechtenstein Liechtenstein 7 0% 1
Sri Lanka Sri Lanka 5 0% 3
Lesotho Lesotho 6 0% 2
Lithuania Lithuania 7 0% 1
Luxembourg Luxembourg 6 0% 2
Latvia Latvia 7 0% 1
Macao SAR China Macao SAR China 6 0% 2
Morocco Morocco 6 0% 2
Monaco Monaco 6 0% 2
Moldova Moldova 7 0% 1
Madagascar Madagascar 6 0% 2
Maldives Maldives 6 0% 2
Mexico Mexico 6 0% 2
Marshall Islands Marshall Islands 6 0% 2
North Macedonia North Macedonia 6 0% 2
Mali Mali 7 0% 1
Malta Malta 5 0% 3
Myanmar (Burma) Myanmar (Burma) 5 0% 3
Montenegro Montenegro 6 0% 2
Mongolia Mongolia 6 0% 2
Mozambique Mozambique 6 0% 2
Mauritania Mauritania 6 0% 2
Mauritius Mauritius 5 0% 3
Malawi Malawi 6 0% 2
Malaysia Malaysia 6 0% 2
Namibia Namibia 7 0% 1
New Caledonia New Caledonia 6 0% 2
Niger Niger 7 0% 1
Nigeria Nigeria 6 0% 2
Nicaragua Nicaragua 6 0% 2
Netherlands Netherlands 6 0% 2
Norway Norway 6 0% 2
Nepal Nepal 5 0% 3
Nauru Nauru 6 0% 2
New Zealand New Zealand 5 0% 3
Oman Oman 6 0% 2
Pakistan Pakistan 5 0% 3
Panama Panama 6 0% 2
Peru Peru 6 0% 2
Philippines Philippines 6 0% 2
Palau Palau 6 0% 2
Papua New Guinea Papua New Guinea 7 0% 1
Poland Poland 7 0% 1
Puerto Rico Puerto Rico 6 0% 2
North Korea North Korea 7 0% 1
Portugal Portugal 6 0% 2
Paraguay Paraguay 6 0% 2
Palestinian Territories Palestinian Territories 6 0% 2
French Polynesia French Polynesia 6 0% 2
Qatar Qatar 6 0% 2
Romania Romania 6 0% 2
Russia Russia 7 0% 1
Rwanda Rwanda 6 0% 2
Saudi Arabia Saudi Arabia 6 0% 2
Sudan Sudan 6 0% 2
Senegal Senegal 6 0% 2
Singapore Singapore 6 0% 2
Solomon Islands Solomon Islands 6 0% 2
Sierra Leone Sierra Leone 6 0% 2
El Salvador El Salvador 7 0% 1
San Marino San Marino 6 0% 2
Somalia Somalia 6 0% 2
Serbia Serbia 7 0% 1
South Sudan South Sudan 6 0% 2
São Tomé & Príncipe São Tomé & Príncipe 6 0% 2
Suriname Suriname 6 0% 2
Slovakia Slovakia 6 0% 2
Slovenia Slovenia 6 0% 2
Sweden Sweden 7 0% 1
Eswatini Eswatini 6 0% 2
Sint Maarten Sint Maarten 6 0% 2
Seychelles Seychelles 6 0% 2
Syria Syria 6 0% 2
Turks & Caicos Islands Turks & Caicos Islands 6 0% 2
Chad Chad 6 0% 2
Togo Togo 6 0% 2
Thailand Thailand 6 0% 2
Tajikistan Tajikistan 7 0% 1
Turkmenistan Turkmenistan 6 0% 2
Timor-Leste Timor-Leste 6 0% 2
Tonga Tonga 6 0% 2
Trinidad & Tobago Trinidad & Tobago 5 0% 3
Tunisia Tunisia 6 0% 2
Turkey Turkey 6 0% 2
Tuvalu Tuvalu 6 0% 2
Tanzania Tanzania 7 0% 1
Uganda Uganda 6 0% 2
Ukraine Ukraine 6 0% 2
Uruguay Uruguay 6 0% 2
United States United States 6 0% 2
Uzbekistan Uzbekistan 7 0% 1
St. Vincent & Grenadines St. Vincent & Grenadines 5 0% 3
Venezuela Venezuela 6 0% 2
British Virgin Islands British Virgin Islands 5 0% 3
U.S. Virgin Islands U.S. Virgin Islands 6 0% 2
Vietnam Vietnam 6 0% 2
Vanuatu Vanuatu 6 0% 2
Samoa Samoa 5 0% 3
Yemen Yemen 6 0% 2
South Africa South Africa 7 0% 1
Zambia Zambia 7 0% 1
Zimbabwe Zimbabwe 6 0% 2

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.PRM.AGES'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.PRM.AGES'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))