Primary education, teachers

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Albania Albania 9,584 -0.869% 61
Andorra Andorra 418 -0.948% 88
United Arab Emirates United Arab Emirates 37,392 +51.7% 43
Armenia Armenia 7,852 -0.165% 65
Azerbaijan Azerbaijan 39,519 -1.02% 41
Burkina Faso Burkina Faso 83,736 -5.08% 28
Bangladesh Bangladesh 384,513 +6.01% 6
Bahrain Bahrain 8,963 +3.22% 62
Bahamas Bahamas 2,145 +24.6% 78
Bosnia & Herzegovina Bosnia & Herzegovina 9,722 +3.95% 60
Belarus Belarus 22,480 -0.24% 54
Belize Belize 2,519 +0.921% 76
Bolivia Bolivia 76,473 +0.0824% 31
Barbados Barbados 1,628 +1.94% 79
Brunei Brunei 3,849 -0.491% 73
China China 6,719,340 +0.229% 1
Côte d’Ivoire Côte d’Ivoire 105,502 +3.77% 23
Congo - Kinshasa Congo - Kinshasa 561,172 +9.6% 4
Congo - Brazzaville Congo - Brazzaville 23,019 -17.3% 52
Comoros Comoros 4,322 -8.18% 72
Cuba Cuba 86,806 -3.55% 25
Cayman Islands Cayman Islands 368 +4.84% 90
Djibouti Djibouti 2,739 +6.62% 75
Dominica Dominica 552 -0.541% 87
Dominican Republic Dominican Republic 78,780 +27.6% 30
Algeria Algeria 212,345 +2.58% 14
Ecuador Ecuador 79,602 +2.27% 29
Egypt Egypt 426,940 -3.25% 5
Ethiopia Ethiopia 358,079 +1.4% 8
Fiji Fiji 6,601 +4.41% 68
Georgia Georgia 32,059 -2.07% 45
Gibraltar Gibraltar 197 -12.8% 93
Guatemala Guatemala 103,418 -11.4% 24
Guyana Guyana 5,370 -1.05% 71
Hong Kong SAR China Hong Kong SAR China 28,700 -1.63% 48
Indonesia Indonesia 1,464,336 +1.21% 3
India India 4,824,726 +3.62% 2
Jamaica Jamaica 12,548 +12.8% 57
Jordan Jordan 63,027 +8.03% 35
Kazakhstan Kazakhstan 112,623 +6.5% 21
Kyrgyzstan Kyrgyzstan 25,366 +9.11% 50
Cambodia Cambodia 44,905 -0.538% 39
Kiribati Kiribati 742 +0.406% 85
Laos Laos 26,032 -20.8% 49
Lebanon Lebanon 36,172 +0.654% 44
St. Lucia St. Lucia 1,058 -2.13% 82
Lesotho Lesotho 10,021 -0.00998% 59
Macao SAR China Macao SAR China 2,836 +3.05% 74
Morocco Morocco 180,715 +3.09% 16
Monaco Monaco 184 +7.6% 94
Moldova Moldova 7,467 -0.771% 66
Madagascar Madagascar 135,269 +1.17% 19
Mali Mali 59,920 -12.8% 36
Mongolia Mongolia 11,744 +2.04% 58
Mauritania Mauritania 22,372 +34.5% 55
Mauritius Mauritius 5,640 -4.99% 69
Malawi Malawi 85,449 +0.768% 26
Malaysia Malaysia 254,669 +0.517% 12
Niger Niger 68,237 +1.04% 33
Nicaragua Nicaragua 29,707 -1.35% 47
Nepal Nepal 158,842 +3.52% 17
Nauru Nauru 62 -1.59% 97
Oman Oman 30,140 +7.23% 46
Peru Peru 217,304 +0.651% 13
Palau Palau 124 +2.48% 95
Palestinian Territories Palestinian Territories 25,038 +3.56% 51
Qatar Qatar 13,998 +6.38% 56
Russia Russia 327,102 -0.452% 9
Rwanda Rwanda 67,539 +7.13% 34
Senegal Senegal 72,008 -0.378% 32
Solomon Islands Solomon Islands 5,562 +27.9% 70
Sierra Leone Sierra Leone 46,007 -4.97% 38
El Salvador El Salvador 22,803 -7.46% 53
San Marino San Marino 247 +1.65% 92
Suriname Suriname 1,403 -72.3% 81
Eswatini Eswatini 8,880 -2.83% 63
Sint Maarten Sint Maarten 387 +21.7% 89
Seychelles Seychelles 692 +13.6% 86
Syria Syria 146,383 +27.6% 18
Turks & Caicos Islands Turks & Caicos Islands 266 +4.72% 91
Chad Chad 51,345 +2.95% 37
Togo Togo 38,768 -5.75% 42
Thailand Thailand 320,912 -5.21% 10
Tajikistan Tajikistan 40,467 -0.325% 40
Timor-Leste Timor-Leste 7,144 -9.55% 67
Tonga Tonga 816 +0.99% 84
Trinidad & Tobago Trinidad & Tobago 8,219 +12% 64
Tunisia Tunisia 84,596 +3.42% 27
Tuvalu Tuvalu 96 -3.03% 96
Tanzania Tanzania 207,323 +2.8% 15
Ukraine Ukraine 106,216 -8.5% 22
Uzbekistan Uzbekistan 121,023 +1.29% 20
St. Vincent & Grenadines St. Vincent & Grenadines 993 +2.16% 83
Venezuela Venezuela 283,420 +153% 11
Vietnam Vietnam 379,191 -0.729% 7
Vanuatu Vanuatu 2,186 +1.58% 77
Samoa Samoa 1,558 +6.79% 80

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.PRM.TCHR'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.PRM.TCHR'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))