Primary education, duration (years)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 6 0% 3
Afghanistan Afghanistan 6 0% 3
Angola Angola 6 0% 3
Albania Albania 5 0% 4
Andorra Andorra 6 0% 3
United Arab Emirates United Arab Emirates 4 0% 5
Argentina Argentina 6 0% 3
Armenia Armenia 4 0% 5
American Samoa American Samoa 6 0% 3
Antigua & Barbuda Antigua & Barbuda 7 0% 2
Australia Australia 7 0% 2
Austria Austria 4 0% 5
Azerbaijan Azerbaijan 4 0% 5
Burundi Burundi 6 0% 3
Belgium Belgium 6 0% 3
Benin Benin 6 0% 3
Burkina Faso Burkina Faso 6 0% 3
Bangladesh Bangladesh 5 0% 4
Bulgaria Bulgaria 4 0% 5
Bahrain Bahrain 6 0% 3
Bahamas Bahamas 6 0% 3
Bosnia & Herzegovina Bosnia & Herzegovina 5 0% 4
Belarus Belarus 4 0% 5
Belize Belize 6 0% 3
Bermuda Bermuda 6 0% 3
Bolivia Bolivia 6 0% 3
Brazil Brazil 5 0% 4
Barbados Barbados 6 0% 3
Brunei Brunei 6 0% 3
Bhutan Bhutan 6 -14.3% 3
Botswana Botswana 7 0% 2
Central African Republic Central African Republic 6 0% 3
Canada Canada 6 0% 3
Switzerland Switzerland 6 0% 3
Chile Chile 6 0% 3
China China 6 0% 3
Côte d’Ivoire Côte d’Ivoire 6 0% 3
Cameroon Cameroon 6 0% 3
Congo - Kinshasa Congo - Kinshasa 6 0% 3
Congo - Brazzaville Congo - Brazzaville 6 0% 3
Colombia Colombia 5 0% 4
Comoros Comoros 6 0% 3
Cape Verde Cape Verde 6 0% 3
Costa Rica Costa Rica 6 0% 3
Cuba Cuba 6 0% 3
Curaçao Curaçao 6 0% 3
Cayman Islands Cayman Islands 6 0% 3
Cyprus Cyprus 6 0% 3
Czechia Czechia 5 0% 4
Germany Germany 4 0% 5
Djibouti Djibouti 5 0% 4
Dominica Dominica 7 0% 2
Denmark Denmark 7 0% 2
Dominican Republic Dominican Republic 6 0% 3
Algeria Algeria 5 0% 4
Ecuador Ecuador 6 0% 3
Egypt Egypt 6 0% 3
Eritrea Eritrea 5 0% 4
Spain Spain 6 0% 3
Estonia Estonia 6 0% 3
Ethiopia Ethiopia 6 0% 3
Finland Finland 6 0% 3
Fiji Fiji 6 0% 3
France France 5 0% 4
Micronesia (Federated States of) Micronesia (Federated States of) 6 0% 3
Gabon Gabon 5 0% 4
United Kingdom United Kingdom 6 0% 3
Georgia Georgia 6 0% 3
Ghana Ghana 6 0% 3
Gibraltar Gibraltar 6 0% 3
Guinea Guinea 6 0% 3
Gambia Gambia 6 0% 3
Guinea-Bissau Guinea-Bissau 6 0% 3
Equatorial Guinea Equatorial Guinea 6 0% 3
Greece Greece 6 0% 3
Grenada Grenada 7 0% 2
Guatemala Guatemala 6 0% 3
Guam Guam 8 0% 1
Guyana Guyana 6 0% 3
Hong Kong SAR China Hong Kong SAR China 6 0% 3
Honduras Honduras 6 0% 3
Croatia Croatia 4 0% 5
Haiti Haiti 6 0% 3
Hungary Hungary 4 0% 5
Indonesia Indonesia 6 0% 3
India India 5 0% 4
Ireland Ireland 8 0% 1
Iran Iran 6 0% 3
Iraq Iraq 6 0% 3
Iceland Iceland 7 0% 2
Israel Israel 6 0% 3
Italy Italy 5 0% 4
Jamaica Jamaica 6 0% 3
Jordan Jordan 6 0% 3
Japan Japan 6 0% 3
Kazakhstan Kazakhstan 4 0% 5
Kenya Kenya 6 0% 3
Kyrgyzstan Kyrgyzstan 4 0% 5
Cambodia Cambodia 6 0% 3
Kiribati Kiribati 6 0% 3
St. Kitts & Nevis St. Kitts & Nevis 7 0% 2
South Korea South Korea 6 0% 3
Kuwait Kuwait 5 0% 4
Laos Laos 5 0% 4
Lebanon Lebanon 6 0% 3
Liberia Liberia 6 0% 3
Libya Libya 6 0% 3
St. Lucia St. Lucia 7 0% 2
Liechtenstein Liechtenstein 5 0% 4
Sri Lanka Sri Lanka 5 0% 4
Lesotho Lesotho 7 0% 2
Lithuania Lithuania 4 0% 5
Luxembourg Luxembourg 6 0% 3
Latvia Latvia 6 0% 3
Macao SAR China Macao SAR China 6 0% 3
Morocco Morocco 6 0% 3
Monaco Monaco 5 0% 4
Moldova Moldova 4 0% 5
Madagascar Madagascar 5 0% 4
Maldives Maldives 7 0% 2
Mexico Mexico 6 0% 3
Marshall Islands Marshall Islands 6 0% 3
North Macedonia North Macedonia 5 0% 4
Mali Mali 6 0% 3
Malta Malta 6 0% 3
Myanmar (Burma) Myanmar (Burma) 5 0% 4
Montenegro Montenegro 5 0% 4
Mongolia Mongolia 5 0% 4
Mozambique Mozambique 7 0% 2
Mauritania Mauritania 6 0% 3
Mauritius Mauritius 6 0% 3
Malawi Malawi 6 0% 3
Malaysia Malaysia 6 0% 3
Namibia Namibia 7 0% 2
New Caledonia New Caledonia 5 0% 4
Niger Niger 6 0% 3
Nigeria Nigeria 6 0% 3
Nicaragua Nicaragua 6 0% 3
Netherlands Netherlands 6 0% 3
Norway Norway 7 0% 2
Nepal Nepal 5 0% 4
Nauru Nauru 6 0% 3
New Zealand New Zealand 6 0% 3
Oman Oman 4 0% 5
Pakistan Pakistan 5 0% 4
Panama Panama 6 0% 3
Peru Peru 6 0% 3
Philippines Philippines 6 0% 3
Palau Palau 6 0% 3
Papua New Guinea Papua New Guinea 6 0% 3
Poland Poland 4 0% 5
Puerto Rico Puerto Rico 6 0% 3
North Korea North Korea 5 0% 4
Portugal Portugal 6 0% 3
Paraguay Paraguay 6 0% 3
Palestinian Territories Palestinian Territories 4 0% 5
French Polynesia French Polynesia 5 0% 4
Qatar Qatar 6 0% 3
Romania Romania 5 0% 4
Russia Russia 4 0% 5
Rwanda Rwanda 6 0% 3
Saudi Arabia Saudi Arabia 6 0% 3
Sudan Sudan 6 0% 3
Senegal Senegal 6 0% 3
Singapore Singapore 6 0% 3
Solomon Islands Solomon Islands 6 0% 3
Sierra Leone Sierra Leone 6 0% 3
El Salvador El Salvador 6 0% 3
San Marino San Marino 5 0% 4
Somalia Somalia 4 -33.3% 5
Serbia Serbia 4 0% 5
South Sudan South Sudan 6 0% 3
São Tomé & Príncipe São Tomé & Príncipe 6 0% 3
Suriname Suriname 6 0% 3
Slovakia Slovakia 4 0% 5
Slovenia Slovenia 6 0% 3
Sweden Sweden 6 0% 3
Eswatini Eswatini 7 0% 2
Sint Maarten Sint Maarten 6 0% 3
Seychelles Seychelles 6 0% 3
Syria Syria 6 0% 3
Turks & Caicos Islands Turks & Caicos Islands 6 0% 3
Chad Chad 6 0% 3
Togo Togo 6 0% 3
Thailand Thailand 6 0% 3
Tajikistan Tajikistan 4 0% 5
Turkmenistan Turkmenistan 4 0% 5
Timor-Leste Timor-Leste 6 0% 3
Tonga Tonga 6 0% 3
Trinidad & Tobago Trinidad & Tobago 7 0% 2
Tunisia Tunisia 6 0% 3
Turkey Turkey 4 0% 5
Tuvalu Tuvalu 6 0% 3
Tanzania Tanzania 7 0% 2
Uganda Uganda 7 0% 2
Ukraine Ukraine 4 0% 5
Uruguay Uruguay 6 0% 3
United States United States 6 0% 3
Uzbekistan Uzbekistan 4 0% 5
St. Vincent & Grenadines St. Vincent & Grenadines 7 0% 2
Venezuela Venezuela 6 0% 3
British Virgin Islands British Virgin Islands 7 0% 2
U.S. Virgin Islands U.S. Virgin Islands 6 0% 3
Vietnam Vietnam 5 0% 4
Vanuatu Vanuatu 6 0% 3
Samoa Samoa 6 0% 3
Yemen Yemen 6 0% 3
South Africa South Africa 7 0% 2
Zambia Zambia 7 0% 2
Zimbabwe Zimbabwe 7 0% 2

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.PRM.DURS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.PRM.DURS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))