Prevalence of HIV, male (% ages 15-24)

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 0.1 0% 19
Angola Angola 0.3 0% 17
Albania Albania 0.1 0% 19
United Arab Emirates United Arab Emirates 0.1 0% 19
Argentina Argentina 0.1 0% 19
Armenia Armenia 0.1 0% 19
Azerbaijan Azerbaijan 0.1 0% 19
Burundi Burundi 0.3 0% 17
Belgium Belgium 0.1 0% 19
Benin Benin 0.2 0% 18
Burkina Faso Burkina Faso 0.2 0% 18
Bangladesh Bangladesh 0.1 0% 19
Bulgaria Bulgaria 0.1 0% 19
Bahamas Bahamas 0.3 -25% 17
Belarus Belarus 0.1 0% 19
Belize Belize 0.6 0% 14
Bolivia Bolivia 0.1 0% 19
Barbados Barbados 0.4 -20% 16
Bhutan Bhutan 0.1 0% 19
Botswana Botswana 2.8 -9.68% 4
Central African Republic Central African Republic 0.9 -10% 12
Chile Chile 0.3 0% 17
Côte d’Ivoire Côte d’Ivoire 0.5 0% 15
Cameroon Cameroon 0.5 0% 15
Congo - Kinshasa Congo - Kinshasa 0.2 0% 18
Congo - Brazzaville Congo - Brazzaville 0.7 0% 13
Colombia Colombia 0.1 0% 19
Comoros Comoros 0.1 0% 19
Cape Verde Cape Verde 0.1 0% 19
Costa Rica Costa Rica 0.3 0% 17
Cuba Cuba 0.3 0% 17
Czechia Czechia 0.1 0% 19
Denmark Denmark 0.1 0% 19
Dominican Republic Dominican Republic 0.4 0% 16
Algeria Algeria 0.1 0% 19
Ecuador Ecuador 0.2 0% 18
Egypt Egypt 0.1 0% 19
Eritrea Eritrea 0.1 0% 19
Spain Spain 0.1 0% 19
Estonia Estonia 0.1 0% 19
Ethiopia Ethiopia 0.2 -33.3% 18
Fiji Fiji 0.1 0% 19
France France 0.1 0% 19
Gabon Gabon 0.5 0% 15
Georgia Georgia 0.1 0% 19
Ghana Ghana 0.3 -25% 17
Guinea Guinea 0.3 0% 17
Gambia Gambia 0.2 0% 18
Guinea-Bissau Guinea-Bissau 0.6 0% 14
Equatorial Guinea Equatorial Guinea 1.2 0% 9
Greece Greece 0.1 0% 19
Guatemala Guatemala 0.1 0% 19
Guyana Guyana 0.2 0% 18
Honduras Honduras 0.1 0% 19
Haiti Haiti 0.4 0% 16
Indonesia Indonesia 0.1 0% 19
Iran Iran 0.1 0% 19
Iraq Iraq 0.1 0% 19
Iceland Iceland 0.1 0% 19
Italy Italy 0.1 0% 19
Jamaica Jamaica 0.5 0% 15
Jordan Jordan 0.1 0% 19
Kenya Kenya 1.1 -8.33% 10
Kyrgyzstan Kyrgyzstan 0.1 0% 19
Cambodia Cambodia 0.3 0% 17
Kuwait Kuwait 0.1 0% 19
Laos Laos 0.2 0% 18
Lebanon Lebanon 0.1 0% 19
Liberia Liberia 0.3 0% 17
Libya Libya 0.1 0% 19
Sri Lanka Sri Lanka 0.1 0% 19
Lesotho Lesotho 3.3 -2.94% 3
Lithuania Lithuania 0.1 0% 19
Luxembourg Luxembourg 0.1 0% 19
Latvia Latvia 0.1 0% 19
Morocco Morocco 0.1 0% 19
Moldova Moldova 0.2 0% 18
Madagascar Madagascar 0.1 0% 19
Maldives Maldives 0.1 0% 19
Mexico Mexico 0.3 0% 17
Mali Mali 0.2 0% 18
Malta Malta 0.1 0% 19
Myanmar (Burma) Myanmar (Burma) 0.3 0% 17
Montenegro Montenegro 0.1 0% 19
Mongolia Mongolia 0.1 0% 19
Mozambique Mozambique 2.7 -6.9% 5
Mauritania Mauritania 0.1 0% 19
Malawi Malawi 1.5 -6.25% 8
Malaysia Malaysia 0.1 0% 19
Namibia Namibia 2.5 -3.85% 6
Niger Niger 0.1 0% 19
Nicaragua Nicaragua 0.2 0% 18
Nepal Nepal 0.1 0% 19
New Zealand New Zealand 0.1 0% 19
Oman Oman 0.1 0% 19
Pakistan Pakistan 0.1 0% 19
Panama Panama 0.7 0% 13
Peru Peru 0.1 0% 19
Philippines Philippines 0.3 0% 17
Papua New Guinea Papua New Guinea 0.2 0% 18
Portugal Portugal 0.1 0% 19
Paraguay Paraguay 0.1 -50% 19
Qatar Qatar 0.1 0% 19
Romania Romania 0.1 0% 19
Rwanda Rwanda 0.6 0% 14
Saudi Arabia Saudi Arabia 0.1 0% 19
Sudan Sudan 0.1 0% 19
Senegal Senegal 0.1 0% 19
Sierra Leone Sierra Leone 0.5 0% 15
El Salvador El Salvador 0.2 0% 18
Serbia Serbia 0.1 0% 19
South Sudan South Sudan 0.5 0% 15
São Tomé & Príncipe São Tomé & Príncipe 0.2 0% 18
Suriname Suriname 0.2 0% 18
Slovakia Slovakia 0.1 0% 19
Slovenia Slovenia 0.1 0% 19
Eswatini Eswatini 4.1 -2.38% 1
Syria Syria 0.1 0% 19
Chad Chad 0.3 0% 17
Togo Togo 0.4 -20% 16
Thailand Thailand 0.4 0% 16
Tajikistan Tajikistan 0.1 0% 19
Timor-Leste Timor-Leste 0.1 0% 19
Trinidad & Tobago Trinidad & Tobago 0.2 0% 18
Tunisia Tunisia 0.1 0% 19
Tanzania Tanzania 0.9 0% 12
Uganda Uganda 1 0% 11
Uruguay Uruguay 0.2 0% 18
Venezuela Venezuela 0.3 0% 17
Vietnam Vietnam 0.1 0% 19
Yemen Yemen 0.1 0% 19
South Africa South Africa 3.6 -2.7% 2
Zambia Zambia 1.9 -5% 7
Zimbabwe Zimbabwe 2.8 -3.45% 4

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.HIV.1524.MA.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.HIV.1524.MA.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))