Prevalence of HIV, female (% ages 15-24)

Source: worldbank.org, 01.09.2025

Year: 2022

Flag Country Value Value change, % Rank
Afghanistan Afghanistan 0.1 0% 26
Angola Angola 0.7 -12.5% 20
Albania Albania 0.1 0% 26
United Arab Emirates United Arab Emirates 0.1 0% 26
Argentina Argentina 0.1 0% 26
Armenia Armenia 0.1 0% 26
Azerbaijan Azerbaijan 0.1 0% 26
Burundi Burundi 0.4 -20% 23
Belgium Belgium 0.1 0% 26
Benin Benin 0.4 0% 23
Burkina Faso Burkina Faso 0.3 0% 24
Bangladesh Bangladesh 0.1 0% 26
Bulgaria Bulgaria 0.1 0% 26
Bahamas Bahamas 0.3 0% 24
Belarus Belarus 0.1 0% 26
Belize Belize 0.5 0% 22
Bolivia Bolivia 0.1 0% 26
Barbados Barbados 0.3 0% 24
Bhutan Bhutan 0.1 0% 26
Botswana Botswana 5.3 -10.2% 6
Central African Republic Central African Republic 1.8 0% 13
Chile Chile 0.1 0% 26
Côte d’Ivoire Côte d’Ivoire 0.8 0% 19
Cameroon Cameroon 1.1 -8.33% 16
Congo - Kinshasa Congo - Kinshasa 0.2 -33.3% 25
Congo - Brazzaville Congo - Brazzaville 3.6 +5.88% 9
Colombia Colombia 0.1 0% 26
Comoros Comoros 0.1 0% 26
Cape Verde Cape Verde 0.2 0% 25
Costa Rica Costa Rica 0.1 0% 26
Cuba Cuba 0.1 0% 26
Czechia Czechia 0.1 0% 26
Denmark Denmark 0.1 0% 26
Dominican Republic Dominican Republic 0.4 0% 23
Algeria Algeria 0.1 0% 26
Ecuador Ecuador 0.1 0% 26
Egypt Egypt 0.1 0% 26
Eritrea Eritrea 0.1 0% 26
Spain Spain 0.1 0% 26
Estonia Estonia 0.1 0% 26
Ethiopia Ethiopia 0.3 -25% 24
Fiji Fiji 0.1 0% 26
France France 0.1 0% 26
Gabon Gabon 1.5 0% 15
Georgia Georgia 0.1 0% 26
Ghana Ghana 1 0% 17
Guinea Guinea 0.8 -11.1% 19
Gambia Gambia 0.4 0% 23
Guinea-Bissau Guinea-Bissau 0.9 -10% 18
Equatorial Guinea Equatorial Guinea 2.7 -3.57% 10
Greece Greece 0.1 0% 26
Guatemala Guatemala 0.1 0% 26
Guyana Guyana 0.4 +33.3% 23
Honduras Honduras 0.1 0% 26
Haiti Haiti 0.9 0% 18
Indonesia Indonesia 0.1 0% 26
Iran Iran 0.1 0% 26
Iraq Iraq 0.1 0% 26
Iceland Iceland 0.1 0% 26
Italy Italy 0.1 0% 26
Jamaica Jamaica 0.5 0% 22
Jordan Jordan 0.1 0% 26
Kenya Kenya 1.7 -10.5% 14
Kyrgyzstan Kyrgyzstan 0.1 0% 26
Cambodia Cambodia 0.2 0% 25
Kuwait Kuwait 0.1 0% 26
Laos Laos 0.1 0% 26
Lebanon Lebanon 0.1 0% 26
Liberia Liberia 0.6 0% 21
Libya Libya 0.1 0% 26
Sri Lanka Sri Lanka 0.1 0% 26
Lesotho Lesotho 7.4 -9.76% 3
Lithuania Lithuania 0.1 0% 26
Luxembourg Luxembourg 0.1 0% 26
Latvia Latvia 0.1 0% 26
Morocco Morocco 0.1 0% 26
Moldova Moldova 0.1 0% 26
Madagascar Madagascar 0.2 0% 25
Maldives Maldives 0.1 0% 26
Mexico Mexico 0.1 0% 26
Mali Mali 0.5 0% 22
Malta Malta 0.1 0% 26
Myanmar (Burma) Myanmar (Burma) 0.4 0% 23
Montenegro Montenegro 0.1 0% 26
Mongolia Mongolia 0.1 0% 26
Mozambique Mozambique 6.5 -7.14% 4
Mauritania Mauritania 0.1 0% 26
Malawi Malawi 2.2 -8.33% 12
Malaysia Malaysia 0.1 0% 26
Namibia Namibia 5.7 -1.72% 5
Niger Niger 0.1 0% 26
Nicaragua Nicaragua 0.1 0% 26
Nepal Nepal 0.1 0% 26
New Zealand New Zealand 0.1 0% 26
Oman Oman 0.1 0% 26
Pakistan Pakistan 0.1 0% 26
Panama Panama 0.2 0% 25
Peru Peru 0.1 0% 26
Philippines Philippines 0.1 0% 26
Papua New Guinea Papua New Guinea 0.5 0% 22
Portugal Portugal 0.1 0% 26
Paraguay Paraguay 0.1 0% 26
Qatar Qatar 0.1 0% 26
Romania Romania 0.1 0% 26
Rwanda Rwanda 0.9 -10% 18
Saudi Arabia Saudi Arabia 0.1 0% 26
Sudan Sudan 0.1 0% 26
Senegal Senegal 0.1 0% 26
Sierra Leone Sierra Leone 1 -9.09% 17
El Salvador El Salvador 0.1 0% 26
Serbia Serbia 0.1 0% 26
South Sudan South Sudan 0.9 -10% 18
São Tomé & Príncipe São Tomé & Príncipe 0.2 0% 25
Suriname Suriname 0.3 0% 24
Slovakia Slovakia 0.1 0% 26
Slovenia Slovenia 0.1 0% 26
Eswatini Eswatini 11.7 -7.87% 1
Syria Syria 0.1 0% 26
Chad Chad 0.5 0% 22
Togo Togo 0.8 0% 19
Thailand Thailand 0.2 0% 25
Tajikistan Tajikistan 0.1 0% 26
Timor-Leste Timor-Leste 0.1 0% 26
Trinidad & Tobago Trinidad & Tobago 0.3 +50% 24
Tunisia Tunisia 0.1 0% 26
Tanzania Tanzania 1.7 -10.5% 14
Uganda Uganda 2.5 -3.85% 11
Uruguay Uruguay 0.2 0% 25
Venezuela Venezuela 0.1 0% 26
Vietnam Vietnam 0.1 0% 26
Yemen Yemen 0.1 0% 26
South Africa South Africa 8.7 -5.43% 2
Zambia Zambia 4.5 -10% 7
Zimbabwe Zimbabwe 4.4 -6.38% 8

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SH.HIV.1524.FE.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SH.HIV.1524.FE.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))