Preprimary education, duration (years)

Source: worldbank.org, 03.09.2025

Year: 2023

Flag Country Value Value change, % Rank
Aruba Aruba 2 0% 6
Afghanistan Afghanistan 1 0% 7
Angola Angola 3 0% 5
Albania Albania 5 0% 3
Andorra Andorra 3 0% 5
United Arab Emirates United Arab Emirates 6 +50% 2
Argentina Argentina 6 0% 2
Armenia Armenia 3 0% 5
Antigua & Barbuda Antigua & Barbuda 5 0% 3
Australia Australia 5 0% 3
Austria Austria 6 0% 2
Azerbaijan Azerbaijan 5 0% 3
Burundi Burundi 3 0% 5
Belgium Belgium 6 0% 2
Benin Benin 2 0% 6
Burkina Faso Burkina Faso 3 0% 5
Bangladesh Bangladesh 3 0% 5
Bulgaria Bulgaria 4 0% 4
Bahrain Bahrain 6 0% 2
Bahamas Bahamas 2 0% 6
Bosnia & Herzegovina Bosnia & Herzegovina 6 0% 2
Belarus Belarus 4 0% 4
Belize Belize 2 0% 6
Bermuda Bermuda 1 0% 7
Bolivia Bolivia 2 0% 6
Brazil Brazil 6 0% 2
Barbados Barbados 5 0% 3
Brunei Brunei 3 0% 5
Bhutan Bhutan 3 +50% 5
Botswana Botswana 3 0% 5
Central African Republic Central African Republic 3 0% 5
Canada Canada 6 0% 2
Switzerland Switzerland 2 0% 6
Chile Chile 6 0% 2
China China 3 0% 5
Côte d’Ivoire Côte d’Ivoire 3 0% 5
Cameroon Cameroon 2 0% 6
Congo - Kinshasa Congo - Kinshasa 3 0% 5
Congo - Brazzaville Congo - Brazzaville 3 0% 5
Colombia Colombia 6 0% 2
Comoros Comoros 3 0% 5
Cape Verde Cape Verde 3 0% 5
Costa Rica Costa Rica 6 0% 2
Cuba Cuba 6 0% 2
Curaçao Curaçao 2 0% 6
Cayman Islands Cayman Islands 4 0% 4
Cyprus Cyprus 6 0% 2
Czechia Czechia 3 0% 5
Germany Germany 6 0% 2
Djibouti Djibouti 2 0% 6
Dominica Dominica 5 0% 3
Denmark Denmark 6 0% 2
Dominican Republic Dominican Republic 3 0% 5
Algeria Algeria 1 0% 7
Ecuador Ecuador 3 0% 5
Egypt Egypt 2 0% 6
Eritrea Eritrea 2 0% 6
Spain Spain 6 0% 2
Estonia Estonia 7 0% 1
Ethiopia Ethiopia 3 0% 5
Finland Finland 6 0% 2
Fiji Fiji 3 0% 5
France France 3 0% 5
Micronesia (Federated States of) Micronesia (Federated States of) 3 0% 5
Gabon Gabon 3 0% 5
United Kingdom United Kingdom 5 0% 3
Georgia Georgia 6 0% 2
Ghana Ghana 5 0% 3
Gibraltar Gibraltar 4 0% 4
Guinea Guinea 3 0% 5
Gambia Gambia 5 0% 3
Guinea-Bissau Guinea-Bissau 3 0% 5
Equatorial Guinea Equatorial Guinea 6 0% 2
Greece Greece 6 0% 2
Grenada Grenada 5 0% 3
Guatemala Guatemala 7 0% 1
Guyana Guyana 2 0% 6
Hong Kong SAR China Hong Kong SAR China 3 0% 5
Honduras Honduras 3 0% 5
Croatia Croatia 7 0% 1
Haiti Haiti 6 0% 2
Hungary Hungary 7 0% 1
Indonesia Indonesia 7 0% 1
India India 3 0% 5
Ireland Ireland 5 0% 3
Iran Iran 1 0% 7
Iraq Iraq 2 0% 6
Iceland Iceland 6 0% 2
Israel Israel 6 0% 2
Italy Italy 3 0% 5
Jamaica Jamaica 6 0% 2
Jordan Jordan 2 0% 6
Japan Japan 3 0% 5
Kazakhstan Kazakhstan 5 0% 3
Kenya Kenya 3 0% 5
Kyrgyzstan Kyrgyzstan 6 0% 2
Cambodia Cambodia 6 0% 2
Kiribati Kiribati 3 0% 5
St. Kitts & Nevis St. Kitts & Nevis 4 0% 4
South Korea South Korea 6 0% 2
Kuwait Kuwait 2 0% 6
Laos Laos 6 0% 2
Lebanon Lebanon 3 0% 5
Liberia Liberia 3 0% 5
Libya Libya 2 0% 6
St. Lucia St. Lucia 4 0% 4
Liechtenstein Liechtenstein 7 0% 1
Sri Lanka Sri Lanka 2 0% 6
Lesotho Lesotho 3 0% 5
Lithuania Lithuania 7 0% 1
Latvia Latvia 6 0% 2
Macao SAR China Macao SAR China 3 0% 5
Morocco Morocco 5 0% 3
Monaco Monaco 3 0% 5
Moldova Moldova 6 0% 2
Madagascar Madagascar 3 0% 5
Maldives Maldives 3 0% 5
Mexico Mexico 6 0% 2
Marshall Islands Marshall Islands 4 0% 4
North Macedonia North Macedonia 5 0% 3
Mali Mali 3 0% 5
Malta Malta 2 0% 6
Myanmar (Burma) Myanmar (Burma) 5 0% 3
Montenegro Montenegro 5 0% 3
Mongolia Mongolia 4 0% 4
Mozambique Mozambique 3 0% 5
Mauritania Mauritania 6 0% 2
Mauritius Mauritius 3 0% 5
Malawi Malawi 3 0% 5
Malaysia Malaysia 2 0% 6
Namibia Namibia 2 0% 6
Niger Niger 3 0% 5
Nigeria Nigeria 5 0% 3
Nicaragua Nicaragua 6 0% 2
Netherlands Netherlands 3 0% 5
Norway Norway 6 0% 2
Nepal Nepal 2 0% 6
Nauru Nauru 3 0% 5
New Zealand New Zealand 5 0% 3
Oman Oman 6 0% 2
Pakistan Pakistan 2 0% 6
Panama Panama 6 0% 2
Peru Peru 6 0% 2
Philippines Philippines 1 0% 7
Palau Palau 3 0% 5
Papua New Guinea Papua New Guinea 4 0% 4
Poland Poland 4 0% 4
Puerto Rico Puerto Rico 6 0% 2
North Korea North Korea 4 0% 4
Paraguay Paraguay 5 0% 3
Palestinian Territories Palestinian Territories 2 0% 6
Qatar Qatar 6 0% 2
Romania Romania 6 0% 2
Russia Russia 6 0% 2
Rwanda Rwanda 3 0% 5
Saudi Arabia Saudi Arabia 4 0% 4
Sudan Sudan 2 0% 6
Senegal Senegal 3 0% 5
Singapore Singapore 6 0% 2
Solomon Islands Solomon Islands 3 0% 5
Sierra Leone Sierra Leone 3 0% 5
El Salvador El Salvador 7 0% 1
San Marino San Marino 6 0% 2
Somalia Somalia 3 0% 5
Serbia Serbia 6 0% 2
South Sudan South Sudan 3 0% 5
São Tomé & Príncipe São Tomé & Príncipe 3 0% 5
Suriname Suriname 2 0% 6
Slovakia Slovakia 3 0% 5
Slovenia Slovenia 5 0% 3
Sweden Sweden 6 0% 2
Eswatini Eswatini 3 0% 5
Sint Maarten Sint Maarten 6 0% 2
Seychelles Seychelles 2 0% 6
Syria Syria 3 0% 5
Turks & Caicos Islands Turks & Caicos Islands 2 0% 6
Chad Chad 3 0% 5
Togo Togo 3 0% 5
Thailand Thailand 5 0% 3
Tajikistan Tajikistan 4 0% 4
Turkmenistan Turkmenistan 5 0% 3
Timor-Leste Timor-Leste 3 0% 5
Tonga Tonga 2 0% 6
Trinidad & Tobago Trinidad & Tobago 2 0% 6
Tunisia Tunisia 3 0% 5
Turkey Turkey 6 0% 2
Tuvalu Tuvalu 3 0% 5
Tanzania Tanzania 1 0% 7
Uganda Uganda 3 0% 5
Ukraine Ukraine 5 0% 3
Uruguay Uruguay 6 0% 2
Uzbekistan Uzbekistan 4 0% 4
St. Vincent & Grenadines St. Vincent & Grenadines 2 0% 6
Venezuela Venezuela 5 0% 3
British Virgin Islands British Virgin Islands 5 0% 3
Vietnam Vietnam 6 0% 2
Samoa Samoa 2 0% 6
Yemen Yemen 6 0% 2
South Africa South Africa 7 0% 1
Zambia Zambia 4 0% 4
Zimbabwe Zimbabwe 2 0% 6

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SE.PRE.DURS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SE.PRE.DURS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))