Population, male (% of total population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 47.2 +0.0177% 204
Afghanistan Afghanistan 50.5 +0.0299% 44
Angola Angola 49.5 +0.0202% 122
Albania Albania 49.4 -0.018% 129
Andorra Andorra 51.1 -0.057% 26
United Arab Emirates United Arab Emirates 63.9 -0.173% 2
Argentina Argentina 49.6 +0.024% 110
Armenia Armenia 46.4 +0.0927% 211
American Samoa American Samoa 50.5 -0.0748% 46
Antigua & Barbuda Antigua & Barbuda 47.6 +0.0168% 196
Australia Australia 49.6 +0.00733% 112
Austria Austria 49.2 +0.0292% 144
Azerbaijan Azerbaijan 49 +0.0365% 156
Burundi Burundi 49.7 +0.00892% 107
Belgium Belgium 49.3 +0.037% 142
Benin Benin 50.1 +0.0226% 68
Burkina Faso Burkina Faso 49.8 +0.00701% 91
Bangladesh Bangladesh 49.2 -0.0526% 149
Bulgaria Bulgaria 48.4 -0.0158% 183
Bahrain Bahrain 62 -0.0575% 4
Bahamas Bahamas 47.7 -0.1% 192
Bosnia & Herzegovina Bosnia & Herzegovina 47.6 +0.0683% 198
Belarus Belarus 46.6 -0.0079% 208
Belize Belize 50.5 -0.0266% 47
Bermuda Bermuda 48.9 -0.0953% 160
Bolivia Bolivia 50.1 -0.0206% 72
Brazil Brazil 49.2 -0.0385% 145
Barbados Barbados 47.9 -0.00317% 189
Brunei Brunei 53.1 -0.0787% 11
Bhutan Bhutan 53.4 -0.0908% 10
Botswana Botswana 49.8 -0.0635% 89
Central African Republic Central African Republic 48 +0.194% 188
Canada Canada 49.7 -0.00388% 108
Switzerland Switzerland 49.7 +0.0331% 106
Chile Chile 49.7 +0.00658% 101
China China 50.9 -0.074% 28
Côte d’Ivoire Côte d’Ivoire 50.9 -0.088% 31
Cameroon Cameroon 49.8 -0.00387% 90
Congo - Kinshasa Congo - Kinshasa 49.6 +0.00595% 113
Congo - Brazzaville Congo - Brazzaville 50 -0.00528% 78
Colombia Colombia 49.3 -0.00841% 138
Comoros Comoros 50.3 -0.0115% 59
Cape Verde Cape Verde 50.9 -0.0144% 32
Costa Rica Costa Rica 49.4 -0.018% 133
Cuba Cuba 49.3 -0.0414% 139
Curaçao Curaçao 47.6 +0.0622% 197
Cayman Islands Cayman Islands 50.2 -0.0349% 64
Cyprus Cyprus 50.4 -0.00827% 53
Czechia Czechia 49.3 +0.00499% 141
Germany Germany 49.4 +0.0125% 135
Djibouti Djibouti 49.6 -0.0193% 117
Dominica Dominica 50 -0.131% 77
Denmark Denmark 49.7 -0.00004% 100
Dominican Republic Dominican Republic 49.7 -0.0215% 98
Algeria Algeria 51 -0.0271% 27
Ecuador Ecuador 49.9 -0.0144% 88
Egypt Egypt 50.5 -0.00259% 43
Eritrea Eritrea 49.4 +0.0372% 137
Spain Spain 49.1 -0.00845% 153
Estonia Estonia 47.5 +0.103% 199
Ethiopia Ethiopia 50.1 -0.00995% 71
Finland Finland 49.4 +0.0168% 131
Fiji Fiji 49.6 +0.00405% 111
France France 48.5 +0.0193% 179
Faroe Islands Faroe Islands 51.7 -0.0953% 17
Micronesia (Federated States of) Micronesia (Federated States of) 49.7 -0.0389% 105
Gabon Gabon 50.8 -0.0784% 37
United Kingdom United Kingdom 49.2 +0.0229% 143
Georgia Georgia 46.6 +0.0226% 207
Ghana Ghana 49.9 -0.0159% 80
Gibraltar Gibraltar 49.8 +0.0154% 95
Guinea Guinea 49.5 +0.0825% 123
Gambia Gambia 49.8 +0.00971% 92
Guinea-Bissau Guinea-Bissau 49.4 +0.0455% 132
Equatorial Guinea Equatorial Guinea 52.7 -0.0857% 13
Greece Greece 48.4 +0.00703% 181
Grenada Grenada 50.1 -0.0939% 70
Greenland Greenland 52.6 -0.124% 14
Guatemala Guatemala 49.6 +0.00612% 114
Guam Guam 50.7 -0.0857% 40
Guyana Guyana 48.7 -0.0441% 170
Hong Kong SAR China Hong Kong SAR China 45 -0.0687% 216
Honduras Honduras 50.3 -0.0145% 56
Croatia Croatia 48.2 +0.0366% 185
Haiti Haiti 49.5 -0.054% 124
Hungary Hungary 48 +0.0678% 187
Indonesia Indonesia 50.2 -0.00153% 63
Isle of Man Isle of Man 49.5 -0.0348% 119
India India 51.6 -0.0264% 19
Ireland Ireland 49.5 -0.00611% 120
Iran Iran 50.8 -0.0367% 35
Iraq Iraq 50.2 +0.049% 65
Iceland Iceland 51.2 +0.00991% 23
Israel Israel 49.8 +0.0416% 93
Italy Italy 48.9 +0.0615% 161
Jamaica Jamaica 49.4 -0.0337% 126
Jordan Jordan 51.6 -0.076% 20
Japan Japan 48.8 -0.0444% 165
Kazakhstan Kazakhstan 48.7 +0.0508% 168
Kenya Kenya 49.7 -0.0175% 97
Kyrgyzstan Kyrgyzstan 49.4 -0.017% 128
Cambodia Cambodia 49 +0.0437% 157
Kiribati Kiribati 48.5 +0.13% 175
St. Kitts & Nevis St. Kitts & Nevis 47.9 -0.115% 191
South Korea South Korea 49.9 -0.00842% 84
Kuwait Kuwait 61.1 -0.0725% 6
Laos Laos 50.2 -0.0132% 60
Lebanon Lebanon 48.6 +0.0442% 174
Liberia Liberia 49.9 +0.0274% 81
Libya Libya 50.8 +0.000249% 33
St. Lucia St. Lucia 49.4 -0.0932% 136
Liechtenstein Liechtenstein 49.7 +0.0374% 103
Sri Lanka Sri Lanka 48.4 -0.0191% 184
Lesotho Lesotho 48.7 +0.0463% 167
Lithuania Lithuania 47.2 +0.0983% 205
Luxembourg Luxembourg 50.3 +0.0269% 57
Latvia Latvia 46.4 +0.0894% 213
Macao SAR China Macao SAR China 46.1 -0.167% 214
Saint Martin (French part) Saint Martin (French part) 46.5 -0.486% 209
Morocco Morocco 50.4 -0.0373% 50
Monaco Monaco 48.9 -0.0524% 159
Moldova Moldova 46 -0.0288% 215
Madagascar Madagascar 50.2 -0.000752% 67
Maldives Maldives 61.9 -0.285% 5
Mexico Mexico 48.5 -0.0163% 178
Marshall Islands Marshall Islands 51.2 -0.0564% 22
North Macedonia North Macedonia 48.6 +0.0272% 173
Mali Mali 50.5 -0.0155% 48
Malta Malta 51.9 +0.0113% 16
Myanmar (Burma) Myanmar (Burma) 49.8 -0.0361% 94
Montenegro Montenegro 48.1 +0.0197% 186
Mongolia Mongolia 49.9 -0.0696% 87
Northern Mariana Islands Northern Mariana Islands 52.8 +0.156% 12
Mozambique Mozambique 48.5 +0.0691% 176
Mauritania Mauritania 49.1 +0.0681% 155
Mauritius Mauritius 49.9 -0.135% 82
Malawi Malawi 48.8 +0.0308% 164
Malaysia Malaysia 52.4 -0.0985% 15
Namibia Namibia 48.8 -0.00283% 162
New Caledonia New Caledonia 49.3 +0.0176% 140
Niger Niger 50.8 +0.00109% 36
Nigeria Nigeria 50.6 +0.0357% 42
Nicaragua Nicaragua 49.2 +0.0256% 146
Netherlands Netherlands 49.7 +0.0228% 104
Norway Norway 50.4 +0.0184% 52
Nepal Nepal 47.9 -0.407% 190
Nauru Nauru 50.9 -0.0355% 30
New Zealand New Zealand 49.7 +0.0257% 102
Oman Oman 62.2 +0.218% 3
Pakistan Pakistan 50.7 -0.165% 38
Panama Panama 50 -0.0126% 76
Peru Peru 49.7 -0.0178% 96
Philippines Philippines 49.9 -0.00316% 85
Palau Palau 53.9 -0.0764% 9
Papua New Guinea Papua New Guinea 51.4 -0.0909% 21
Poland Poland 48.4 -0.0236% 180
Puerto Rico Puerto Rico 47.1 -0.0724% 206
North Korea North Korea 49.5 +0.0829% 125
Portugal Portugal 47.6 -0.00508% 194
Paraguay Paraguay 50.1 -0.0263% 69
Palestinian Territories Palestinian Territories 49.6 -0.11% 109
French Polynesia French Polynesia 50.6 -0.0524% 41
Qatar Qatar 71.3 -0.33% 1
Romania Romania 48.4 -0.00503% 182
Russia Russia 46.4 -0.0627% 212
Rwanda Rwanda 48.8 +0.0732% 166
Saudi Arabia Saudi Arabia 60.5 -0.196% 7
Sudan Sudan 49.6 -0.0412% 116
Senegal Senegal 50.8 -0.0913% 34
Singapore Singapore 51.7 -0.0441% 18
Solomon Islands Solomon Islands 51.1 -0.00981% 25
Sierra Leone Sierra Leone 49.9 +0.00937% 86
El Salvador El Salvador 47.5 -0.000741% 200
San Marino San Marino 49.2 +0.0136% 150
Somalia Somalia 50.1 -0.0101% 73
Serbia Serbia 47.4 -0.103% 201
South Sudan South Sudan 49.2 -0.0123% 148
São Tomé & Príncipe São Tomé & Príncipe 49.7 -0.0504% 99
Suriname Suriname 50 -0.0614% 79
Slovakia Slovakia 48.8 -0.0109% 163
Slovenia Slovenia 50.2 +0.0629% 61
Sweden Sweden 50.4 +0.016% 54
Eswatini Eswatini 49.1 +0.0213% 152
Sint Maarten Sint Maarten 48.7 -0.146% 172
Seychelles Seychelles 55.2 -0.0324% 8
Syria Syria 50 +0.0535% 75
Turks & Caicos Islands Turks & Caicos Islands 50.1 -0.0461% 74
Chad Chad 50.2 -0.0144% 66
Togo Togo 50.3 +0.0299% 58
Thailand Thailand 48.7 -0.108% 169
Tajikistan Tajikistan 49.1 +0.075% 151
Turkmenistan Turkmenistan 49.1 +0.0815% 154
Timor-Leste Timor-Leste 50.4 +0.0158% 51
Tonga Tonga 47.2 -0.358% 203
Trinidad & Tobago Trinidad & Tobago 49.4 -0.042% 127
Tunisia Tunisia 49.4 -0.0478% 130
Turkey Turkey 49.9 -0.0402% 83
Tuvalu Tuvalu 51.2 +0.0298% 24
Tanzania Tanzania 49.6 +0.0199% 118
Uganda Uganda 49.6 +0.0363% 115
Ukraine Ukraine 46.5 -0.0313% 210
Uruguay Uruguay 48.5 +0.0167% 177
United States United States 50.2 -0.00958% 62
Uzbekistan Uzbekistan 50.4 +0.0197% 49
St. Vincent & Grenadines St. Vincent & Grenadines 50.9 -0.133% 29
Venezuela Venezuela 49.4 -0.0455% 134
British Virgin Islands British Virgin Islands 47.4 +0.265% 202
U.S. Virgin Islands U.S. Virgin Islands 47.6 -0.395% 195
Vietnam Vietnam 49 -0.00167% 158
Vanuatu Vanuatu 50.5 -0.0324% 45
Samoa Samoa 50.4 +0.0354% 55
Kosovo Kosovo 49.2 -0.00425% 147
Yemen Yemen 50.7 +0.0185% 39
South Africa South Africa 48.7 +0.0509% 171
Zambia Zambia 49.5 +0.0143% 121
Zimbabwe Zimbabwe 47.7 +0.106% 193

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.TOTL.MA.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.TOTL.MA.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))