Population, male

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 50,840 +0.264% 191
Afghanistan Afghanistan 21,532,540 +2.91% 36
Angola Angola 18,747,466 +3.11% 41
Albania Albania 1,341,886 -1.16% 142
Andorra Andorra 41,884 +1.28% 195
United Arab Emirates United Arab Emirates 6,950,545 +3.57% 78
Argentina Argentina 22,680,713 +0.371% 35
Armenia Armenia 1,408,477 +2.43% 138
American Samoa American Samoa 23,602 -1.66% 202
Antigua & Barbuda Antigua & Barbuda 44,633 +0.507% 194
Australia Australia 13,498,584 +2.08% 55
Austria Austria 4,519,007 +0.541% 98
Azerbaijan Azerbaijan 5,001,274 +0.518% 94
Burundi Burundi 6,978,594 +2.63% 76
Belgium Belgium 5,856,543 +0.796% 83
Benin Benin 7,252,565 +2.52% 75
Burkina Faso Burkina Faso 11,730,086 +2.28% 59
Bangladesh Bangladesh 85,343,656 +1.17% 8
Bulgaria Bulgaria 3,118,451 -0.0504% 113
Bahrain Bahrain 985,627 +0.678% 150
Bahamas Bahamas 191,597 +0.36% 176
Bosnia & Herzegovina Bosnia & Herzegovina 1,505,794 -0.586% 136
Belarus Belarus 4,256,316 -0.494% 101
Belize Belize 210,442 +1.42% 174
Bermuda Bermuda 31,619 -0.193% 199
Bolivia Bolivia 6,219,215 +1.36% 79
Brazil Brazil 104,295,118 +0.368% 7
Barbados Barbados 135,423 +0.0436% 180
Brunei Brunei 245,699 +0.742% 173
Bhutan Bhutan 423,047 +0.562% 163
Botswana Botswana 1,256,565 +1.58% 144
Central African Republic Central African Republic 2,557,962 +3.66% 125
Canada Canada 20,502,744 +3% 39
Switzerland Switzerland 4,487,921 +1.68% 99
Chile Chile 9,823,449 +0.545% 65
China China 717,753,173 -0.197% 2
Côte d’Ivoire Côte d’Ivoire 16,246,681 +2.38% 49
Cameroon Cameroon 14,514,341 +2.64% 51
Congo - Kinshasa Congo - Kinshasa 54,216,832 +3.3% 15
Congo - Brazzaville Congo - Brazzaville 3,166,095 +2.42% 110
Colombia Colombia 26,095,271 +1.07% 28
Comoros Comoros 435,815 +1.9% 162
Cape Verde Cape Verde 266,947 +0.473% 172
Costa Rica Costa Rica 2,534,728 +0.46% 127
Cuba Cuba 5,416,880 -0.406% 88
Curaçao Curaçao 74,200 +0.127% 185
Cayman Islands Cayman Islands 37,375 +1.91% 197
Cyprus Cyprus 684,248 +0.981% 155
Czechia Czechia 5,366,194 +0.172% 89
Germany Germany 41,238,833 -0.454% 19
Djibouti Djibouti 579,313 +1.35% 160
Dominica Dominica 33,102 -0.589% 198
Denmark Denmark 2,970,888 +0.505% 116
Dominican Republic Dominican Republic 5,681,194 +0.828% 85
Algeria Algeria 23,874,384 +1.38% 33
Ecuador Ecuador 9,041,130 +0.85% 70
Egypt Egypt 58,840,145 +1.75% 13
Eritrea Eritrea 1,745,353 +1.92% 132
Spain Spain 23,962,115 +0.941% 32
Estonia Estonia 652,333 +0.228% 157
Ethiopia Ethiopia 66,167,290 +2.61% 10
Finland Finland 2,786,289 +0.972% 120
Fiji Fiji 460,973 +0.506% 161
France France 33,215,814 +0.355% 23
Faroe Islands Faroe Islands 28,273 +0.419% 201
Micronesia (Federated States of) Micronesia (Federated States of) 56,217 +0.432% 189
Gabon Gabon 1,288,745 +2.1% 143
United Kingdom United Kingdom 34,087,728 +1.09% 21
Georgia Georgia 1,712,513 -1.1% 133
Ghana Ghana 17,194,242 +1.88% 46
Gibraltar Gibraltar 19,575 +2.25% 208
Guinea Guinea 7,301,267 +2.51% 74
Gambia Gambia 1,374,334 +2.31% 140
Guinea-Bissau Guinea-Bissau 1,088,010 +2.28% 147
Equatorial Guinea Equatorial Guinea 997,748 +2.35% 149
Greece Greece 5,032,215 -0.154% 93
Grenada Grenada 58,755 +0.0136% 188
Greenland Greenland 29,884 -0.174% 200
Guatemala Guatemala 9,129,191 +1.56% 69
Guam Guam 84,988 +0.678% 184
Guyana Guyana 404,584 +0.529% 165
Hong Kong SAR China Hong Kong SAR China 3,389,467 -0.228% 108
Honduras Honduras 5,449,967 +1.68% 86
Croatia Croatia 1,865,047 +0.208% 130
Haiti Haiti 5,825,356 +1.11% 84
Hungary Hungary 4,591,619 -0.244% 97
Indonesia Indonesia 142,407,916 +0.816% 4
Isle of Man Isle of Man 41,666 -0.0408% 196
India India 748,323,427 +0.868% 1
Ireland Ireland 2,663,329 +1.36% 121
Iran Iran 46,532,057 +1.02% 17
Iraq Iraq 23,111,081 +2.2% 34
Iceland Iceland 207,180 +2.87% 175
Israel Israel 4,966,369 +1.32% 95
Italy Italy 28,829,387 +0.0489% 25
Jamaica Jamaica 1,403,966 -0.0552% 139
Jordan Jordan 5,957,377 +0.917% 81
Japan Japan 60,480,020 -0.479% 12
Kazakhstan Kazakhstan 10,029,906 +1.34% 64
Kenya Kenya 28,056,072 +1.96% 26
Kyrgyzstan Kyrgyzstan 3,571,420 +1.74% 105
Cambodia Cambodia 8,642,987 +1.28% 72
Kiribati Kiribati 65,279 +1.63% 187
St. Kitts & Nevis St. Kitts & Nevis 22,423 +0.0669% 205
South Korea South Korea 25,830,846 +0.0659% 29
Kuwait Kuwait 3,039,680 +2.41% 114
Laos Laos 3,904,034 +1.35% 102
Lebanon Lebanon 2,823,634 +0.607% 117
Liberia Liberia 2,801,892 +2.21% 119
Libya Libya 3,752,970 +1.03% 103
St. Lucia St. Lucia 88,743 +0.163% 183
Liechtenstein Liechtenstein 19,971 +0.904% 207
Sri Lanka Sri Lanka 10,603,008 -0.568% 60
Lesotho Lesotho 1,138,892 +1.17% 145
Lithuania Lithuania 1,363,154 +0.672% 141
Luxembourg Luxembourg 341,118 +1.72% 166
Latvia Latvia 863,434 -0.71% 152
Macao SAR China Macao SAR China 316,372 +1.04% 169
Saint Martin (French part) Saint Martin (French part) 12,150 -5.5% 213
Morocco Morocco 19,202,022 +0.94% 40
Monaco Monaco 18,900 -0.886% 210
Moldova Moldova 1,099,342 -2.82% 146
Madagascar Madagascar 16,032,529 +2.46% 50
Maldives Maldives 326,805 +0.0573% 167
Mexico Mexico 63,459,580 +0.848% 11
Marshall Islands Marshall Islands 19,237 -3.35% 209
North Macedonia North Macedonia 871,851 -1.92% 151
Mali Mali 12,350,772 +2.97% 57
Malta Malta 298,079 +3.92% 171
Myanmar (Burma) Myanmar (Burma) 27,128,841 +0.64% 27
Montenegro Montenegro 300,250 +0.0683% 170
Mongolia Mongolia 1,757,365 +1.18% 131
Northern Mariana Islands Northern Mariana Islands 23,379 -1.76% 203
Mozambique Mozambique 16,802,082 +3.03% 48
Mauritania Mauritania 2,535,726 +3% 126
Mauritius Mauritius 628,694 -0.256% 158
Malawi Malawi 10,567,044 +2.64% 61
Malaysia Malaysia 18,617,794 +1.13% 42
Namibia Namibia 1,479,806 +2.26% 137
New Caledonia New Caledonia 144,353 +0.973% 178
Niger Niger 13,725,328 +3.34% 54
Nigeria Nigeria 117,673,771 +2.14% 6
Nicaragua Nicaragua 3,401,957 +1.38% 107
Netherlands Netherlands 8,939,477 +0.678% 71
Norway Norway 2,808,196 +0.973% 118
Nepal Nepal 14,200,276 -0.553% 52
Nauru Nauru 6,083 +0.579% 215
New Zealand New Zealand 2,652,484 +1.81% 122
Oman Oman 3,285,829 +4.83% 109
Pakistan Pakistan 127,433,406 +1.35% 5
Panama Panama 2,258,004 +1.26% 128
Peru Peru 17,017,564 +1.08% 47
Philippines Philippines 57,784,107 +0.826% 14
Palau Palau 9,530 -0.262% 214
Papua New Guinea Papua New Guinea 5,439,223 +1.71% 87
Poland Poland 17,710,437 -0.385% 44
Puerto Rico Puerto Rico 1,508,234 -0.0879% 135
North Korea North Korea 13,108,717 +0.388% 56
Portugal Portugal 5,097,573 +1.16% 92
Paraguay Paraguay 3,474,116 +1.22% 106
Palestinian Territories Palestinian Territories 2,625,766 +2.28% 124
French Polynesia French Polynesia 142,530 +0.193% 179
Qatar Qatar 2,037,072 +7.24% 129
Romania Romania 9,235,992 +0.0467% 68
Russia Russia 66,607,914 -0.266% 9
Rwanda Rwanda 6,954,758 +2.24% 77
Saudi Arabia Saudi Arabia 21,369,165 +4.53% 37
Sudan Sudan 25,012,749 +0.77% 30
Senegal Senegal 9,405,151 +2.25% 67
Singapore Singapore 3,119,075 +1.97% 112
Solomon Islands Solomon Islands 418,847 +2.39% 164
Sierra Leone Sierra Leone 4,309,971 +2.15% 100
El Salvador El Salvador 3,010,733 +0.452% 115
San Marino San Marino 16,707 +0.36% 212
Somalia Somalia 9,522,790 +3.53% 66
Serbia Serbia 3,125,122 -0.645% 111
South Sudan South Sudan 5,874,364 +3.99% 82
São Tomé & Príncipe São Tomé & Príncipe 117,078 +1.97% 181
Suriname Suriname 316,926 +0.82% 168
Slovakia Slovakia 2,647,061 -0.097% 123
Slovenia Slovenia 1,068,392 +0.34% 148
Sweden Sweden 5,323,555 +0.33% 90
Eswatini Eswatini 610,191 +1.02% 159
Sint Maarten Sint Maarten 21,096 +1.26% 206
Seychelles Seychelles 66,944 +1.29% 186
Syria Syria 12,341,170 +4.63% 58
Turks & Caicos Islands Turks & Caicos Islands 23,291 +0.683% 204
Chad Chad 10,181,358 +5.06% 63
Togo Togo 4,789,204 +2.3% 96
Thailand Thailand 34,895,390 -0.156% 20
Tajikistan Tajikistan 5,203,997 +2.01% 91
Turkmenistan Turkmenistan 3,678,122 +1.85% 104
Timor-Leste Timor-Leste 706,128 +1.2% 154
Tonga Tonga 49,213 -0.76% 193
Trinidad & Tobago Trinidad & Tobago 676,429 +0.0182% 156
Tunisia Tunisia 6,068,423 +0.58% 80
Turkey Turkey 42,685,629 +0.186% 18
Tuvalu Tuvalu 4,936 -1.69% 216
Tanzania Tanzania 33,983,247 +2.94% 22
Uganda Uganda 24,805,126 +2.83% 31
Ukraine Ukraine 17,598,051 +0.306% 45
Uruguay Uruguay 1,642,560 -0.0274% 134
United States United States 170,880,836 +0.972% 3
Uzbekistan Uzbekistan 18,343,712 +2.01% 43
St. Vincent & Grenadines St. Vincent & Grenadines 51,236 -0.83% 190
Venezuela Venezuela 14,033,859 +0.324% 53
British Virgin Islands British Virgin Islands 18,692 +1.52% 211
U.S. Virgin Islands U.S. Virgin Islands 49,687 -0.907% 192
Vietnam Vietnam 49,461,399 +0.632% 16
Vanuatu Vanuatu 165,465 +2.27% 177
Samoa Samoa 109,794 +0.662% 182
Kosovo Kosovo 751,228 -9.24% 153
Yemen Yemen 20,558,038 +3.05% 38
South Africa South Africa 31,152,952 +1.31% 24
Zambia Zambia 10,550,240 +2.87% 62
Zimbabwe Zimbabwe 7,929,088 +1.9% 73

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.TOTL.MA.IN'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.TOTL.MA.IN'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))