Population, female (% of total population)

Source: worldbank.org, 01.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 52.8 -0.0158% 13
Afghanistan Afghanistan 49.5 -0.0305% 173
Angola Angola 50.5 -0.0197% 95
Albania Albania 50.6 +0.0176% 88
Andorra Andorra 48.9 +0.0597% 191
United Arab Emirates United Arab Emirates 36.1 +0.308% 215
Argentina Argentina 50.4 -0.0237% 107
Armenia Armenia 53.6 -0.0802% 6
American Samoa American Samoa 49.5 +0.0763% 171
Antigua & Barbuda Antigua & Barbuda 52.4 -0.0153% 21
Australia Australia 50.4 -0.00722% 105
Austria Austria 50.8 -0.0283% 73
Azerbaijan Azerbaijan 51 -0.035% 61
Burundi Burundi 50.3 -0.0088% 110
Belgium Belgium 50.7 -0.036% 75
Benin Benin 49.9 -0.0227% 149
Burkina Faso Burkina Faso 50.2 -0.00696% 126
Bangladesh Bangladesh 50.8 +0.051% 68
Bulgaria Bulgaria 51.6 +0.0148% 34
Bahrain Bahrain 38 +0.094% 213
Bahamas Bahamas 52.3 +0.0918% 25
Bosnia & Herzegovina Bosnia & Herzegovina 52.4 -0.062% 19
Belarus Belarus 53.4 +0.00689% 9
Belize Belize 49.5 +0.0271% 170
Bermuda Bermuda 51.1 +0.0914% 57
Bolivia Bolivia 49.9 +0.0207% 145
Brazil Brazil 50.8 +0.0373% 72
Barbados Barbados 52.1 +0.00292% 28
Brunei Brunei 46.9 +0.0893% 206
Bhutan Bhutan 46.6 +0.105% 207
Botswana Botswana 50.2 +0.0632% 128
Central African Republic Central African Republic 52 -0.178% 29
Canada Canada 50.3 +0.00383% 109
Switzerland Switzerland 50.3 -0.0326% 111
Chile Chile 50.3 -0.0065% 116
China China 49.1 +0.077% 189
Côte d’Ivoire Côte d’Ivoire 49.1 +0.0913% 186
Cameroon Cameroon 50.2 +0.00384% 127
Congo - Kinshasa Congo - Kinshasa 50.4 -0.00586% 104
Congo - Brazzaville Congo - Brazzaville 50 +0.00528% 139
Colombia Colombia 50.7 +0.0082% 79
Comoros Comoros 49.7 +0.0117% 158
Cape Verde Cape Verde 49.1 +0.015% 185
Costa Rica Costa Rica 50.6 +0.0176% 84
Cuba Cuba 50.7 +0.0404% 78
Curaçao Curaçao 52.4 -0.0564% 20
Cayman Islands Cayman Islands 49.8 +0.0352% 153
Cyprus Cyprus 49.6 +0.0084% 164
Czechia Czechia 50.7 -0.00485% 76
Germany Germany 50.6 -0.0122% 82
Djibouti Djibouti 50.4 +0.019% 100
Dominica Dominica 50 +0.131% 140
Denmark Denmark 50.3 +0.00004% 117
Dominican Republic Dominican Republic 50.3 +0.0212% 119
Algeria Algeria 49 +0.0282% 190
Ecuador Ecuador 50.1 +0.0143% 129
Egypt Egypt 49.5 +0.00264% 174
Eritrea Eritrea 50.6 -0.0362% 80
Spain Spain 50.9 +0.00815% 64
Estonia Estonia 52.5 -0.0936% 18
Ethiopia Ethiopia 49.9 +0.00999% 146
Finland Finland 50.6 -0.0164% 86
Fiji Fiji 50.4 -0.00399% 106
France France 51.5 -0.0181% 38
Faroe Islands Faroe Islands 48.3 +0.102% 200
Micronesia (Federated States of) Micronesia (Federated States of) 50.3 +0.0385% 112
Gabon Gabon 49.2 +0.0809% 180
United Kingdom United Kingdom 50.8 -0.0222% 74
Georgia Georgia 53.4 -0.0197% 10
Ghana Ghana 50.1 +0.0159% 137
Gibraltar Gibraltar 50.2 -0.0153% 122
Guinea Guinea 50.5 -0.0807% 94
Gambia Gambia 50.2 -0.00963% 125
Guinea-Bissau Guinea-Bissau 50.6 -0.0444% 85
Equatorial Guinea Equatorial Guinea 47.3 +0.0957% 204
Greece Greece 51.6 -0.0066% 36
Grenada Grenada 49.9 +0.0946% 147
Greenland Greenland 47.4 +0.137% 203
Guatemala Guatemala 50.4 -0.00602% 103
Guam Guam 49.3 +0.0881% 177
Guyana Guyana 51.3 +0.0419% 47
Hong Kong SAR China Hong Kong SAR China 55 +0.0564% 1
Honduras Honduras 49.7 +0.0147% 161
Croatia Croatia 51.8 -0.0341% 32
Haiti Haiti 50.5 +0.053% 93
Hungary Hungary 52 -0.0626% 30
Indonesia Indonesia 49.8 +0.00155% 154
Isle of Man Isle of Man 50.5 +0.0342% 98
India India 48.4 +0.0281% 198
Ireland Ireland 50.5 +0.00599% 97
Iran Iran 49.2 +0.0379% 182
Iraq Iraq 49.8 -0.0494% 152
Iceland Iceland 48.8 -0.0104% 194
Israel Israel 50.2 -0.0412% 124
Italy Italy 51.1 -0.0587% 56
Jamaica Jamaica 50.6 +0.033% 91
Jordan Jordan 48.4 +0.081% 197
Japan Japan 51.2 +0.0424% 52
Kazakhstan Kazakhstan 51.3 -0.0482% 49
Kenya Kenya 50.3 +0.0173% 120
Kyrgyzstan Kyrgyzstan 50.6 +0.0166% 89
Cambodia Cambodia 51 -0.0419% 60
Kiribati Kiribati 51.5 -0.123% 42
St. Kitts & Nevis St. Kitts & Nevis 52.1 +0.105% 26
South Korea South Korea 50.1 +0.00839% 133
Kuwait Kuwait 38.9 +0.114% 211
Laos Laos 49.8 +0.0133% 157
Lebanon Lebanon 51.4 -0.0419% 43
Liberia Liberia 50.1 -0.0273% 136
Libya Libya 49.2 -0.000258% 184
St. Lucia St. Lucia 50.6 +0.0911% 81
Liechtenstein Liechtenstein 50.3 -0.0369% 114
Sri Lanka Sri Lanka 51.6 +0.0179% 33
Lesotho Lesotho 51.3 -0.0439% 50
Lithuania Lithuania 52.8 -0.0877% 12
Luxembourg Luxembourg 49.7 -0.0272% 160
Latvia Latvia 53.6 -0.0771% 4
Macao SAR China Macao SAR China 53.9 +0.143% 3
Saint Martin (French part) Saint Martin (French part) 53.5 +0.426% 8
Morocco Morocco 49.6 +0.038% 167
Monaco Monaco 51.1 +0.0503% 58
Moldova Moldova 54 +0.0246% 2
Madagascar Madagascar 49.8 +0.000757% 150
Maldives Maldives 38.1 +0.467% 212
Mexico Mexico 51.5 +0.0154% 39
Marshall Islands Marshall Islands 48.8 +0.0593% 195
North Macedonia North Macedonia 51.4 -0.0258% 44
Mali Mali 49.5 +0.0158% 169
Malta Malta 48.1 -0.0122% 201
Myanmar (Burma) Myanmar (Burma) 50.2 +0.0358% 123
Montenegro Montenegro 51.9 -0.0183% 31
Mongolia Mongolia 50.1 +0.0693% 130
Northern Mariana Islands Northern Mariana Islands 47.2 -0.174% 205
Mozambique Mozambique 51.5 -0.065% 41
Mauritania Mauritania 50.9 -0.0654% 62
Mauritius Mauritius 50.1 +0.135% 135
Malawi Malawi 51.2 -0.0294% 53
Malaysia Malaysia 47.6 +0.109% 202
Namibia Namibia 51.2 +0.0027% 55
New Caledonia New Caledonia 50.7 -0.0171% 77
Niger Niger 49.2 -0.00113% 181
Nigeria Nigeria 49.4 -0.0365% 175
Nicaragua Nicaragua 50.8 -0.0247% 71
Netherlands Netherlands 50.3 -0.0225% 113
Norway Norway 49.6 -0.0187% 165
Nepal Nepal 52.1 +0.377% 27
Nauru Nauru 49.1 +0.0369% 187
New Zealand New Zealand 50.3 -0.0253% 115
Oman Oman 37.8 -0.357% 214
Pakistan Pakistan 49.3 +0.17% 179
Panama Panama 50 +0.0126% 141
Peru Peru 50.3 +0.0176% 121
Philippines Philippines 50.1 +0.00315% 132
Palau Palau 46.1 +0.0894% 208
Papua New Guinea Papua New Guinea 48.6 +0.0964% 196
Poland Poland 51.6 +0.0222% 37
Puerto Rico Puerto Rico 52.9 +0.0645% 11
North Korea North Korea 50.5 -0.0811% 92
Portugal Portugal 52.4 +0.00462% 23
Paraguay Paraguay 49.9 +0.0265% 148
Palestinian Territories Palestinian Territories 50.4 +0.108% 108
French Polynesia French Polynesia 49.4 +0.0536% 176
Qatar Qatar 28.7 +0.827% 216
Romania Romania 51.6 +0.00472% 35
Russia Russia 53.6 +0.0544% 5
Rwanda Rwanda 51.2 -0.0696% 51
Saudi Arabia Saudi Arabia 39.5 +0.302% 210
Sudan Sudan 50.4 +0.0406% 101
Senegal Senegal 49.2 +0.0946% 183
Singapore Singapore 48.3 +0.0472% 199
Solomon Islands Solomon Islands 48.9 +0.0103% 192
Sierra Leone Sierra Leone 50.1 -0.00932% 131
El Salvador El Salvador 52.5 +0.000671% 17
San Marino San Marino 50.8 -0.0131% 67
Somalia Somalia 49.9 +0.0102% 144
Serbia Serbia 52.6 +0.0929% 16
South Sudan South Sudan 50.8 +0.0119% 69
São Tomé & Príncipe São Tomé & Príncipe 50.3 +0.0498% 118
Suriname Suriname 50 +0.0614% 138
Slovakia Slovakia 51.2 +0.0104% 54
Slovenia Slovenia 49.8 -0.0634% 156
Sweden Sweden 49.6 -0.0163% 163
Eswatini Eswatini 50.9 -0.0205% 65
Sint Maarten Sint Maarten 51.3 +0.139% 45
Seychelles Seychelles 44.8 +0.0399% 209
Syria Syria 50 -0.0535% 142
Turks & Caicos Islands Turks & Caicos Islands 49.9 +0.0463% 143
Chad Chad 49.8 +0.0145% 151
Togo Togo 49.7 -0.0303% 159
Thailand Thailand 51.3 +0.103% 48
Tajikistan Tajikistan 50.9 -0.0724% 66
Turkmenistan Turkmenistan 50.9 -0.0784% 63
Timor-Leste Timor-Leste 49.6 -0.016% 166
Tonga Tonga 52.8 +0.323% 14
Trinidad & Tobago Trinidad & Tobago 50.6 +0.0411% 90
Tunisia Tunisia 50.6 +0.0467% 87
Turkey Turkey 50.1 +0.0401% 134
Tuvalu Tuvalu 48.8 -0.0312% 193
Tanzania Tanzania 50.4 -0.0195% 99
Uganda Uganda 50.4 -0.0357% 102
Ukraine Ukraine 53.5 +0.0272% 7
Uruguay Uruguay 51.5 -0.0157% 40
United States United States 49.8 +0.00967% 155
Uzbekistan Uzbekistan 49.6 -0.0201% 168
St. Vincent & Grenadines St. Vincent & Grenadines 49.1 +0.138% 188
Venezuela Venezuela 50.6 +0.0445% 83
British Virgin Islands British Virgin Islands 52.6 -0.237% 15
U.S. Virgin Islands U.S. Virgin Islands 52.4 +0.361% 22
Vietnam Vietnam 51 +0.0016% 59
Vanuatu Vanuatu 49.5 +0.0331% 172
Samoa Samoa 49.6 -0.0359% 162
Kosovo Kosovo 50.8 +0.00412% 70
Yemen Yemen 49.3 -0.019% 178
South Africa South Africa 51.3 -0.0482% 46
Zambia Zambia 50.5 -0.014% 96
Zimbabwe Zimbabwe 52.3 -0.0961% 24

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.TOTL.FE.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.TOTL.FE.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))