Population, female

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 56,784 +0.231% 189
Afghanistan Afghanistan 21,114,952 +2.85% 36
Angola Angola 19,138,383 +3.07% 40
Albania Albania 1,372,731 -1.12% 141
Andorra Andorra 40,054 +1.4% 196
United Arab Emirates United Arab Emirates 3,926,436 +4.07% 102
Argentina Argentina 23,015,446 +0.323% 33
Armenia Armenia 1,625,023 +2.25% 136
American Samoa American Samoa 23,163 -1.52% 204
Antigua & Barbuda Antigua & Barbuda 49,139 +0.472% 194
Australia Australia 13,706,225 +2.06% 54
Austria Austria 4,659,475 +0.483% 98
Azerbaijan Azerbaijan 5,201,576 +0.446% 92
Burundi Burundi 7,069,192 +2.61% 77
Belgium Belgium 6,020,301 +0.722% 81
Benin Benin 7,210,159 +2.47% 76
Burkina Faso Burkina Faso 11,818,695 +2.26% 59
Bangladesh Bangladesh 88,218,708 +1.27% 8
Bulgaria Bulgaria 3,325,915 -0.0198% 111
Bahrain Bahrain 603,043 +0.831% 159
Bahamas Bahamas 209,686 +0.554% 173
Bosnia & Herzegovina Bosnia & Herzegovina 1,658,459 -0.715% 135
Belarus Belarus 4,877,396 -0.479% 96
Belize Belize 206,630 +1.48% 174
Bermuda Bermuda 33,017 -0.00303% 199
Bolivia Bolivia 6,194,100 +1.4% 79
Brazil Brazil 107,703,455 +0.444% 7
Barbados Barbados 147,044 +0.049% 179
Brunei Brunei 217,022 +0.912% 172
Bhutan Bhutan 368,477 +0.759% 166
Botswana Botswana 1,264,574 +1.71% 143
Central African Republic Central African Republic 2,772,728 +3.28% 119
Canada Canada 20,785,855 +3.01% 37
Switzerland Switzerland 4,546,181 +1.61% 99
Chile Chile 9,941,322 +0.532% 65
China China 691,221,827 -0.0461% 2
Côte d’Ivoire Côte d’Ivoire 15,687,549 +2.56% 49
Cameroon Cameroon 14,609,403 +2.65% 51
Congo - Kinshasa Congo - Kinshasa 55,059,433 +3.29% 15
Congo - Brazzaville Congo - Brazzaville 3,166,866 +2.43% 112
Colombia Colombia 26,791,092 +1.09% 28
Comoros Comoros 430,813 +1.92% 162
Cape Verde Cape Verde 257,930 +0.503% 171
Costa Rica Costa Rica 2,595,182 +0.495% 125
Cuba Cuba 5,562,903 -0.324% 86
Curaçao Curaçao 81,700 +0.00734% 185
Cayman Islands Cayman Islands 37,082 +1.98% 197
Cyprus Cyprus 674,034 +0.998% 156
Czechia Czechia 5,515,970 +0.162% 87
Germany Germany 42,272,117 -0.478% 19
Djibouti Djibouti 589,409 +1.39% 160
Dominica Dominica 33,103 -0.328% 198
Denmark Denmark 3,006,104 +0.505% 113
Dominican Republic Dominican Republic 5,746,363 +0.871% 83
Algeria Algeria 22,939,924 +1.44% 34
Ecuador Ecuador 9,094,348 +0.879% 70
Egypt Egypt 57,698,113 +1.75% 14
Eritrea Eritrea 1,790,250 +1.84% 131
Spain Spain 24,845,022 +0.958% 32
Estonia Estonia 719,653 +0.0304% 153
Ethiopia Ethiopia 65,892,477 +2.63% 11
Finland Finland 2,850,925 +0.938% 116
Fiji Fiji 467,811 +0.498% 161
France France 35,300,885 +0.317% 21
Faroe Islands Faroe Islands 26,446 +0.616% 201
Micronesia (Federated States of) Micronesia (Federated States of) 56,943 +0.508% 188
Gabon Gabon 1,250,207 +2.26% 144
United Kingdom United Kingdom 35,138,272 +1.05% 22
Georgia Georgia 1,961,337 -1.14% 129
Ghana Ghana 17,233,172 +1.91% 45
Gibraltar Gibraltar 19,754 +2.21% 209
Guinea Guinea 7,453,518 +2.34% 74
Gambia Gambia 1,385,654 +2.29% 140
Guinea-Bissau Guinea-Bissau 1,113,342 +2.18% 146
Equatorial Guinea Equatorial Guinea 894,768 +2.53% 150
Greece Greece 5,356,590 -0.168% 90
Grenada Grenada 58,452 +0.202% 187
Greenland Greenland 26,952 +0.0854% 200
Guatemala Guatemala 9,277,168 +1.55% 68
Guam Guam 82,789 +0.852% 184
Guyana Guyana 426,503 +0.615% 163
Hong Kong SAR China Hong Kong SAR China 4,134,633 -0.103% 101
Honduras Honduras 5,375,736 +1.71% 89
Croatia Croatia 2,001,253 +0.137% 127
Haiti Haiti 5,947,201 +1.21% 82
Hungary Hungary 4,970,695 -0.374% 95
Indonesia Indonesia 141,080,015 +0.819% 4
Isle of Man Isle of Man 42,494 +0.0282% 195
India India 702,612,364 +0.923% 1
Ireland Ireland 2,716,928 +1.37% 121
Iran Iran 45,035,681 +1.1% 17
Iraq Iraq 22,930,934 +2.1% 35
Iceland Iceland 197,430 +2.85% 176
Israel Israel 5,008,031 +1.23% 94
Italy Italy 30,156,636 -0.0713% 25
Jamaica Jamaica 1,435,209 +0.0115% 139
Jordan Jordan 5,595,499 +1.08% 85
Japan Japan 63,495,351 -0.393% 12
Kazakhstan Kazakhstan 10,562,665 +1.24% 63
Kenya Kenya 28,376,872 +1.99% 26
Kyrgyzstan Kyrgyzstan 3,653,194 +1.78% 105
Cambodia Cambodia 8,995,814 +1.19% 72
Kiribati Kiribati 69,239 +1.38% 186
St. Kitts & Nevis St. Kitts & Nevis 24,420 +0.287% 202
South Korea South Korea 25,920,219 +0.0827% 29
Kuwait Kuwait 1,934,181 +2.6% 130
Laos Laos 3,865,785 +1.38% 103
Lebanon Lebanon 2,982,328 +0.52% 114
Liberia Liberia 2,810,925 +2.15% 117
Libya Libya 3,628,053 +1.03% 106
St. Lucia St. Lucia 91,001 +0.347% 183
Liechtenstein Liechtenstein 20,226 +0.838% 208
Sri Lanka Sri Lanka 11,312,992 -0.531% 60
Lesotho Lesotho 1,198,531 +1.08% 145
Lithuania Lithuania 1,524,901 +0.485% 138
Luxembourg Luxembourg 336,599 +1.67% 167
Latvia Latvia 999,007 -0.876% 148
Macao SAR China Macao SAR China 370,628 +1.35% 165
Saint Martin (French part) Saint Martin (French part) 13,979 -4.63% 213
Morocco Morocco 18,879,151 +1.02% 41
Monaco Monaco 19,731 -0.784% 210
Moldova Moldova 1,289,933 -2.76% 142
Madagascar Madagascar 15,932,427 +2.47% 48
Maldives Maldives 200,994 +0.812% 175
Mexico Mexico 67,401,427 +0.88% 10
Marshall Islands Marshall Islands 18,311 -3.24% 211
North Macedonia North Macedonia 920,328 -1.98% 149
Mali Mali 12,127,823 +3% 58
Malta Malta 276,267 +3.89% 170
Myanmar (Burma) Myanmar (Burma) 27,371,250 +0.713% 27
Montenegro Montenegro 323,581 +0.03% 168
Mongolia Mongolia 1,767,423 +1.32% 132
Northern Mariana Islands Northern Mariana Islands 20,899 -2.09% 206
Mozambique Mozambique 17,829,684 +2.9% 44
Mauritania Mauritania 2,633,669 +2.86% 124
Mauritius Mauritius 630,815 +0.013% 158
Malawi Malawi 11,088,242 +2.58% 61
Malaysia Malaysia 16,939,879 +1.34% 47
Namibia Namibia 1,550,325 +2.27% 137
New Caledonia New Caledonia 148,286 +0.938% 178
Niger Niger 13,307,084 +3.33% 56
Nigeria Nigeria 115,005,707 +2.07% 6
Nicaragua Nicaragua 3,514,183 +1.33% 107
Netherlands Netherlands 9,054,760 +0.632% 71
Norway Norway 2,764,076 +0.936% 120
Nepal Nepal 15,450,778 +0.23% 50
Nauru Nauru 5,864 +0.635% 215
New Zealand New Zealand 2,686,016 +1.76% 122
Oman Oman 1,995,709 +4.23% 128
Pakistan Pakistan 123,835,758 +1.69% 5
Panama Panama 2,257,573 +1.29% 126
Peru Peru 17,200,284 +1.12% 46
Philippines Philippines 58,059,563 +0.832% 13
Palau Palau 8,165 -0.0857% 214
Papua New Guinea Papua New Guinea 5,137,279 +1.9% 93
Poland Poland 18,844,270 -0.339% 42
Puerto Rico Puerto Rico 1,695,061 +0.049% 134
North Korea North Korea 13,390,106 +0.224% 55
Portugal Portugal 5,604,063 +1.17% 84
Paraguay Paraguay 3,455,037 +1.27% 109
Palestinian Territories Palestinian Territories 2,663,386 +2.5% 123
French Polynesia French Polynesia 139,277 +0.299% 180
Qatar Qatar 820,750 +8.49% 151
Romania Romania 9,833,348 +0.0565% 66
Russia Russia 76,925,937 -0.149% 9
Rwanda Rwanda 7,301,809 +2.09% 75
Saudi Arabia Saudi Arabia 13,931,115 +5.06% 53
Sudan Sudan 25,436,214 +0.853% 30
Senegal Senegal 9,096,833 +2.44% 69
Singapore Singapore 2,917,785 +2.06% 115
Solomon Islands Solomon Islands 400,351 +2.41% 164
Sierra Leone Sierra Leone 4,332,051 +2.14% 100
El Salvador El Salvador 3,327,460 +0.453% 110
San Marino San Marino 17,270 +0.331% 212
Somalia Somalia 9,486,361 +3.55% 67
Serbia Serbia 3,462,080 -0.451% 108
South Sudan South Sudan 6,069,044 +4.02% 80
São Tomé & Príncipe São Tomé & Príncipe 118,458 +2.07% 181
Suriname Suriname 317,505 +0.944% 169
Slovakia Slovakia 2,775,008 -0.0757% 118
Slovenia Slovenia 1,057,932 +0.213% 147
Sweden Sweden 5,246,154 +0.298% 91
Eswatini Eswatini 632,631 +0.98% 157
Sint Maarten Sint Maarten 22,254 +1.55% 205
Seychelles Seychelles 54,410 +1.36% 192
Syria Syria 12,331,590 +4.51% 57
Turks & Caicos Islands Turks & Caicos Islands 23,244 +0.776% 203
Chad Chad 10,117,765 +5.09% 64
Togo Togo 4,726,032 +2.24% 97
Thailand Thailand 36,772,621 +0.0549% 20
Tajikistan Tajikistan 5,386,930 +1.86% 88
Turkmenistan Turkmenistan 3,816,376 +1.69% 104
Timor-Leste Timor-Leste 694,510 +1.17% 154
Tonga Tonga 54,962 -0.0818% 190
Trinidad & Tobago Trinidad & Tobago 691,904 +0.101% 155
Tunisia Tunisia 6,208,686 +0.676% 78
Turkey Turkey 42,833,032 +0.266% 18
Tuvalu Tuvalu 4,710 -1.77% 216
Tanzania Tanzania 34,576,910 +2.9% 23
Uganda Uganda 25,209,966 +2.76% 31
Ukraine Ukraine 20,262,170 +0.365% 38
Uruguay Uruguay 1,744,028 -0.0598% 133
United States United States 169,230,152 +0.991% 3
Uzbekistan Uzbekistan 18,018,147 +1.97% 43
St. Vincent & Grenadines St. Vincent & Grenadines 49,380 -0.56% 193
Venezuela Venezuela 14,371,684 +0.415% 52
British Virgin Islands British Virgin Islands 20,779 +1.01% 207
U.S. Virgin Islands U.S. Virgin Islands 54,690 -0.155% 191
Vietnam Vietnam 51,526,287 +0.635% 16
Vanuatu Vanuatu 162,312 +2.33% 177
Samoa Samoa 108,225 +0.589% 182
Kosovo Kosovo 776,096 -9.23% 152
Yemen Yemen 20,025,126 +3.01% 39
South Africa South Africa 32,854,235 +1.21% 24
Zambia Zambia 10,764,716 +2.84% 62
Zimbabwe Zimbabwe 8,705,285 +1.7% 73

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.TOTL.FE.IN'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.TOTL.FE.IN'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))