Population ages 80 and above, female (% of female population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 2.94 +4.11% 76
Afghanistan Afghanistan 0.325 +2.49% 205
Angola Angola 0.42 +1.01% 193
Albania Albania 4.09 +2.91% 61
Andorra Andorra 4.56 +2.55% 55
United Arab Emirates United Arab Emirates 0.254 -1.07% 212
Argentina Argentina 3.82 +2.11% 65
Armenia Armenia 3.08 -6.72% 75
American Samoa American Samoa 1.21 +3.76% 126
Antigua & Barbuda Antigua & Barbuda 2.69 +2.95% 80
Australia Australia 5.1 +2.56% 46
Austria Austria 7.58 +1.53% 14
Azerbaijan Azerbaijan 1.48 -6.6% 114
Burundi Burundi 0.356 +1.93% 202
Belgium Belgium 6.93 +0.865% 22
Benin Benin 0.487 +1.35% 183
Burkina Faso Burkina Faso 0.336 +2.12% 204
Bangladesh Bangladesh 1.22 +5.44% 125
Bulgaria Bulgaria 6.36 +1.9% 28
Bahrain Bahrain 0.8 +3.2% 147
Bahamas Bahamas 3.37 +5.02% 70
Bosnia & Herzegovina Bosnia & Herzegovina 7.36 -0.498% 17
Belarus Belarus 5 -3.94% 47
Belize Belize 0.779 +1.47% 152
Bermuda Bermuda 6.51 +4.81% 23
Bolivia Bolivia 1.18 +1.08% 127
Brazil Brazil 2.35 +3.69% 88
Barbados Barbados 3.67 +2.36% 66
Brunei Brunei 1.07 +1.9% 132
Bhutan Bhutan 1.22 +0.756% 124
Botswana Botswana 0.814 +1.32% 146
Central African Republic Central African Republic 0.173 +9.29% 215
Canada Canada 5.65 +2.31% 39
Switzerland Switzerland 7 +2.58% 20
Chile Chile 3.84 +2.27% 64
China China 3.14 +2.77% 73
Côte d’Ivoire Côte d’Ivoire 0.385 +0.391% 199
Cameroon Cameroon 0.413 -0.0945% 194
Congo - Kinshasa Congo - Kinshasa 0.45 +1.51% 186
Congo - Brazzaville Congo - Brazzaville 0.393 -0.667% 198
Colombia Colombia 1.94 +4.87% 98
Comoros Comoros 0.739 +3.41% 158
Cape Verde Cape Verde 1.7 -0.158% 109
Costa Rica Costa Rica 3.08 +4.24% 74
Cuba Cuba 4.76 +4.11% 53
Curaçao Curaçao 4.15 +5.48% 58
Cayman Islands Cayman Islands 1.79 +3.37% 104
Cyprus Cyprus 4.14 +2.1% 59
Czechia Czechia 6.09 +5.37% 31
Germany Germany 9.04 +0.422% 4
Djibouti Djibouti 0.751 +3.76% 157
Dominica Dominica 3.16 -3.45% 72
Denmark Denmark 6.46 +4.86% 27
Dominican Republic Dominican Republic 1.74 +1.64% 106
Algeria Algeria 1.16 +1.33% 129
Ecuador Ecuador 1.93 +3.76% 102
Egypt Egypt 0.61 +2.28% 169
Eritrea Eritrea 0.776 +3.66% 154
Spain Spain 7.76 +2.06% 12
Estonia Estonia 8.53 -0.77% 7
Ethiopia Ethiopia 0.51 +3.4% 180
Finland Finland 7.57 +1.73% 15
Fiji Fiji 1.01 +2.08% 135
France France 7.64 +0.88% 13
Faroe Islands Faroe Islands 5.24 -0.454% 42
Micronesia (Federated States of) Micronesia (Federated States of) 0.791 +4.72% 150
Gabon Gabon 0.752 +0.124% 155
United Kingdom United Kingdom 6.11 +2.23% 30
Georgia Georgia 4.8 -3.48% 52
Ghana Ghana 0.63 +0.542% 167
Gibraltar Gibraltar 5.2 +0.52% 45
Guinea Guinea 0.574 +0.399% 174
Gambia Gambia 0.401 +3.41% 196
Guinea-Bissau Guinea-Bissau 0.437 +1.82% 189
Equatorial Guinea Equatorial Guinea 0.527 -0.205% 178
Greece Greece 8.89 +1.27% 5
Grenada Grenada 3.85 -0.268% 63
Greenland Greenland 1.52 +4.69% 113
Guatemala Guatemala 0.816 +2.98% 145
Guam Guam 2.76 +6.4% 77
Guyana Guyana 1.26 +3.85% 123
Hong Kong SAR China Hong Kong SAR China 5.61 +0.748% 40
Honduras Honduras 0.662 +3.03% 165
Croatia Croatia 7.56 -0.722% 16
Haiti Haiti 0.694 +2.63% 161
Hungary Hungary 6.51 +2.51% 24
Indonesia Indonesia 1.38 +2.54% 117
Isle of Man Isle of Man 7.23 +3.49% 19
India India 1.26 +2.69% 122
Ireland Ireland 4.4 +2.91% 56
Iran Iran 1.37 +3.87% 119
Iraq Iraq 0.576 +2.71% 173
Iceland Iceland 4.14 +2.07% 60
Israel Israel 3.48 -0.394% 68
Italy Italy 9.42 +0.671% 3
Jamaica Jamaica 1.43 +3.55% 115
Jordan Jordan 0.792 +5.08% 149
Japan Japan 12.9 +2.17% 2
Kazakhstan Kazakhstan 1.93 -5.78% 100
Kenya Kenya 0.645 -2.74% 166
Kyrgyzstan Kyrgyzstan 0.822 -8.47% 144
Cambodia Cambodia 1.01 +3.27% 137
Kiribati Kiribati 0.699 +1.91% 160
St. Kitts & Nevis St. Kitts & Nevis 2.08 -2.31% 93
South Korea South Korea 6.25 +3.99% 29
Kuwait Kuwait 0.507 +1.61% 181
Laos Laos 0.685 +0.38% 164
Lebanon Lebanon 2.4 +2.02% 86
Liberia Liberia 0.407 +1.6% 195
Libya Libya 0.966 +0.198% 139
St. Lucia St. Lucia 1.98 +2.32% 96
Liechtenstein Liechtenstein 6.03 +5.04% 33
Sri Lanka Sri Lanka 2.44 +5.55% 85
Lesotho Lesotho 0.896 -1.21% 143
Lithuania Lithuania 7.93 -1.13% 9
Luxembourg Luxembourg 4.96 +0.192% 48
Latvia Latvia 8.6 +0.311% 6
Macao SAR China Macao SAR China 2.04 +1.11% 94
Saint Martin (French part) Saint Martin (French part) 5.22 +7.06% 43
Morocco Morocco 1.33 +4.7% 121
Monaco Monaco 18.2 -1.9% 1
Moldova Moldova 3.61 -1% 67
Madagascar Madagascar 0.428 +0.547% 192
Maldives Maldives 1.07 +4.71% 133
Mexico Mexico 1.71 +3.2% 108
Marshall Islands Marshall Islands 0.429 +4.01% 191
North Macedonia North Macedonia 4.17 +2.46% 57
Mali Mali 0.296 +1.2% 209
Malta Malta 6.04 +6.15% 32
Myanmar (Burma) Myanmar (Burma) 1.05 +1.42% 134
Montenegro Montenegro 5.21 -0.572% 44
Mongolia Mongolia 0.973 +0.969% 138
Northern Mariana Islands Northern Mariana Islands 1.01 +6.41% 136
Mozambique Mozambique 0.311 +3.07% 207
Mauritania Mauritania 0.488 -0.897% 182
Mauritius Mauritius 2.59 +4.02% 82
Malawi Malawi 0.588 -0.00837% 170
Malaysia Malaysia 1.41 +3.83% 116
Namibia Namibia 0.78 +2.69% 151
New Caledonia New Caledonia 2.75 +1.5% 78
Niger Niger 0.297 +2.87% 208
Nigeria Nigeria 0.367 +1.25% 201
Nicaragua Nicaragua 1.12 +2.64% 130
Netherlands Netherlands 5.95 +2.06% 34
Norway Norway 5.55 +2.64% 41
Nepal Nepal 0.963 +4.17% 140
Nauru Nauru 0.0767 -18.7% 216
New Zealand New Zealand 4.63 +2.21% 54
Oman Oman 0.687 -0.207% 163
Pakistan Pakistan 0.627 +3.07% 168
Panama Panama 2.46 +3.75% 84
Peru Peru 2.32 +3.98% 89
Philippines Philippines 0.799 +2.45% 148
Palau Palau 1.96 +0.721% 97
Papua New Guinea Papua New Guinea 0.375 +2.94% 200
Poland Poland 5.7 +0.231% 37
Puerto Rico Puerto Rico 7.91 +5.3% 10
North Korea North Korea 3.35 +2.11% 71
Portugal Portugal 8.51 +2.17% 8
Paraguay Paraguay 1.37 +3.28% 118
Palestinian Territories Palestinian Territories 0.689 +0.941% 162
French Polynesia French Polynesia 2.48 +6.93% 83
Qatar Qatar 0.252 +1.2% 213
Romania Romania 5.68 -0.326% 38
Russia Russia 4.91 -4.74% 50
Rwanda Rwanda 0.588 +0.905% 171
Saudi Arabia Saudi Arabia 0.573 +2.61% 176
Sudan Sudan 0.354 +0.13% 203
Senegal Senegal 0.442 -2.2% 187
Singapore Singapore 3.45 +2.61% 69
Solomon Islands Solomon Islands 0.573 -3.11% 175
Sierra Leone Sierra Leone 0.436 +1.89% 190
El Salvador El Salvador 1.94 +2.45% 99
San Marino San Marino 7.8 +4.07% 11
Somalia Somalia 0.316 +1% 206
Serbia Serbia 5.81 +2.19% 36
South Sudan South Sudan 0.394 +3.55% 197
São Tomé & Príncipe São Tomé & Príncipe 0.934 -1.54% 142
Suriname Suriname 1.89 +3.09% 103
Slovakia Slovakia 4.91 +3.32% 49
Slovenia Slovenia 7.33 +1.32% 18
Sweden Sweden 6.94 +4.23% 21
Eswatini Eswatini 0.73 +5.75% 159
Sint Maarten Sint Maarten 1.75 +6.1% 105
Seychelles Seychelles 2.25 -5.38% 90
Syria Syria 0.752 -1.39% 156
Turks & Caicos Islands Turks & Caicos Islands 2.74 -0.77% 79
Chad Chad 0.257 -0.14% 211
Togo Togo 0.295 +2.38% 210
Thailand Thailand 3.9 +3.4% 62
Tajikistan Tajikistan 0.523 -5.5% 179
Turkmenistan Turkmenistan 0.777 -5.15% 153
Timor-Leste Timor-Leste 0.939 +5.65% 141
Tonga Tonga 1.56 -0.443% 112
Trinidad & Tobago Trinidad & Tobago 1.93 +5.72% 101
Tunisia Tunisia 1.72 +2.31% 107
Turkey Turkey 2.36 +2.65% 87
Tuvalu Tuvalu 1.37 +5.04% 120
Tanzania Tanzania 0.57 +2.73% 177
Uganda Uganda 0.466 -0.915% 185
Ukraine Ukraine 6.49 -2.24% 25
Uruguay Uruguay 6.47 +0.963% 26
United States United States 4.86 +3.28% 51
Uzbekistan Uzbekistan 1.17 -4.24% 128
St. Vincent & Grenadines St. Vincent & Grenadines 2.65 -2.06% 81
Venezuela Venezuela 1.99 +3.74% 95
British Virgin Islands British Virgin Islands 1.56 +1.98% 111
U.S. Virgin Islands U.S. Virgin Islands 5.94 +5.63% 35
Vietnam Vietnam 2.16 -0.214% 91
Vanuatu Vanuatu 0.469 -1.63% 184
Samoa Samoa 1.12 +0.0752% 131
Kosovo Kosovo 2.14 +6.67% 92
Yemen Yemen 0.439 +0.577% 188
South Africa South Africa 1.58 -0.731% 110
Zambia Zambia 0.239 +0.0628% 214
Zimbabwe Zimbabwe 0.577 +1.81% 172

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.80UP.FE.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.80UP.FE.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))