Population ages 75-79, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 2.73 +6.24% 52
Afghanistan Afghanistan 0.334 -0.331% 206
Angola Angola 0.393 +0.18% 196
Albania Albania 2.86 +3.98% 47
Andorra Andorra 2.97 +1.98% 41
United Arab Emirates United Arab Emirates 0.225 +22.4% 213
Argentina Argentina 2.03 +2.92% 73
Armenia Armenia 1.47 +13% 98
American Samoa American Samoa 1.17 +7.54% 111
Antigua & Barbuda Antigua & Barbuda 1.67 +5.12% 88
Australia Australia 3.53 +3.56% 30
Austria Austria 3.44 +2.28% 33
Azerbaijan Azerbaijan 0.857 +19.4% 131
Burundi Burundi 0.327 -0.0886% 208
Belgium Belgium 3.77 +3.99% 24
Benin Benin 0.469 +1.25% 183
Burkina Faso Burkina Faso 0.354 -4.18% 203
Bangladesh Bangladesh 1.14 +1.32% 113
Bulgaria Bulgaria 3.73 +4.89% 25
Bahrain Bahrain 0.429 -0.289% 189
Bahamas Bahamas 2.02 -1.88% 74
Bosnia & Herzegovina Bosnia & Herzegovina 2.95 +8.31% 44
Belarus Belarus 1.97 +16% 76
Belize Belize 0.765 +3.48% 141
Bermuda Bermuda 3.55 +3.7% 29
Bolivia Bolivia 0.891 +0.181% 128
Brazil Brazil 1.72 +5.06% 86
Barbados Barbados 2.78 +4.4% 50
Brunei Brunei 0.875 +7.11% 129
Bhutan Bhutan 1.03 +0.86% 121
Botswana Botswana 0.555 +4.64% 161
Central African Republic Central African Republic 0.253 +2.43% 212
Canada Canada 3.64 +3.92% 26
Switzerland Switzerland 3.81 +0.937% 22
Chile Chile 2.35 +5.92% 63
China China 2.23 +6.54% 66
Côte d’Ivoire Côte d’Ivoire 0.395 +1.52% 195
Cameroon Cameroon 0.403 -1.24% 193
Congo - Kinshasa Congo - Kinshasa 0.488 -0.579% 176
Congo - Brazzaville Congo - Brazzaville 0.404 +1.29% 192
Colombia Colombia 1.55 +4.64% 93
Comoros Comoros 0.776 -2.94% 139
Cape Verde Cape Verde 0.835 +7.15% 133
Costa Rica Costa Rica 2.08 +4.74% 70
Cuba Cuba 2.95 +1.89% 45
Curaçao Curaçao 2.58 +4.11% 57
Cayman Islands Cayman Islands 1.42 +4.53% 101
Cyprus Cyprus 2.6 +2.45% 56
Czechia Czechia 3.93 +4.6% 20
Germany Germany 3.56 +1.75% 28
Djibouti Djibouti 0.796 +3.49% 138
Dominica Dominica 2.16 +0.946% 68
Denmark Denmark 4.56 -0.0189% 8
Dominican Republic Dominican Republic 1.1 +5.55% 116
Algeria Algeria 0.965 +7.16% 125
Ecuador Ecuador 1.4 +4.67% 102
Egypt Egypt 0.661 +5.87% 150
Eritrea Eritrea 0.71 -0.869% 145
Spain Spain 3.79 +2.55% 23
Estonia Estonia 2.86 +8.48% 48
Ethiopia Ethiopia 0.513 +1.09% 170
Finland Finland 4.99 +6.7% 3
Fiji Fiji 0.874 +1.38% 130
France France 4.18 +7.48% 15
Faroe Islands Faroe Islands 3.51 -0.149% 31
Micronesia (Federated States of) Micronesia (Federated States of) 0.696 +11.1% 146
Gabon Gabon 0.634 +0.545% 156
United Kingdom United Kingdom 4.04 +3.33% 18
Georgia Georgia 1.94 +10.5% 77
Ghana Ghana 0.533 +2.12% 168
Gibraltar Gibraltar 3.87 +5.9% 21
Guinea Guinea 0.511 -0.26% 171
Gambia Gambia 0.449 -2.4% 186
Guinea-Bissau Guinea-Bissau 0.413 +1.64% 191
Equatorial Guinea Equatorial Guinea 0.491 +3.36% 174
Greece Greece 4.35 +3.1% 11
Grenada Grenada 1.74 +5.07% 83
Greenland Greenland 1.67 +3.23% 89
Guatemala Guatemala 0.803 +2.86% 137
Guam Guam 2.17 +9.17% 67
Guyana Guyana 0.972 +4.36% 124
Hong Kong SAR China Hong Kong SAR China 4.08 +12.8% 17
Honduras Honduras 0.632 +5.87% 157
Croatia Croatia 3.5 +6.78% 32
Haiti Haiti 0.663 +0.726% 148
Hungary Hungary 3.17 +3.21% 37
Indonesia Indonesia 0.972 +1.12% 123
Isle of Man Isle of Man 4.98 +4.47% 4
India India 1.04 +5.09% 119
Ireland Ireland 3.12 +2.93% 38
Iran Iran 1.4 +7.17% 103
Iraq Iraq 0.471 +2.05% 181
Iceland Iceland 2.92 +3.94% 46
Israel Israel 2.33 +6.17% 64
Italy Italy 4.61 +4.55% 6
Jamaica Jamaica 1.24 -2.18% 108
Jordan Jordan 0.694 +5.17% 147
Japan Japan 6.22 +6.04% 2
Kazakhstan Kazakhstan 0.839 +18.8% 132
Kenya Kenya 0.435 +5.29% 188
Kyrgyzstan Kyrgyzstan 0.553 +15.5% 164
Cambodia Cambodia 0.813 +4.31% 135
Kiribati Kiribati 0.534 +1.3% 167
St. Kitts & Nevis St. Kitts & Nevis 1.45 +4.6% 99
South Korea South Korea 2.96 +5.67% 42
Kuwait Kuwait 0.329 +4.13% 207
Laos Laos 0.656 +2.78% 151
Lebanon Lebanon 1.72 +8.75% 85
Liberia Liberia 0.509 -2.08% 172
Libya Libya 0.768 +0.456% 140
St. Lucia St. Lucia 1.45 +1.18% 100
Liechtenstein Liechtenstein 4.15 +1.82% 16
Sri Lanka Sri Lanka 1.93 +5.78% 78
Lesotho Lesotho 0.428 +2.92% 190
Lithuania Lithuania 2.44 +3.46% 59
Luxembourg Luxembourg 2.7 +4.23% 54
Latvia Latvia 2.75 +5.43% 51
Macao SAR China Macao SAR China 2.53 +15% 58
Saint Martin (French part) Saint Martin (French part) 3.11 +8.1% 39
Morocco Morocco 1.19 +5.71% 109
Monaco Monaco 6.38 -0.222% 1
Moldova Moldova 1.69 +22.4% 87
Madagascar Madagascar 0.454 +6.08% 184
Maldives Maldives 0.638 -1.89% 153
Mexico Mexico 1.34 +2.9% 104
Marshall Islands Marshall Islands 0.655 +7.74% 152
North Macedonia North Macedonia 2.79 +7.14% 49
Mali Mali 0.372 -2.08% 200
Malta Malta 4.25 +3.67% 13
Myanmar (Burma) Myanmar (Burma) 0.939 +3.64% 126
Montenegro Montenegro 2.39 +8.49% 60
Mongolia Mongolia 0.553 -1.39% 165
Northern Mariana Islands Northern Mariana Islands 1.24 +16.9% 107
Mozambique Mozambique 0.337 -2.07% 205
Mauritania Mauritania 0.498 -0.953% 173
Mauritius Mauritius 2.06 +9.57% 72
Malawi Malawi 0.4 -3.1% 194
Malaysia Malaysia 1.19 +6.64% 110
Namibia Namibia 0.453 +0.906% 185
New Caledonia New Caledonia 2.24 +5.12% 65
Niger Niger 0.364 +2.84% 201
Nigeria Nigeria 0.481 -1.42% 178
Nicaragua Nicaragua 0.81 +4.09% 136
Netherlands Netherlands 4.28 +3.49% 12
Norway Norway 3.96 +2% 19
Nepal Nepal 1.14 +3.99% 114
Nauru Nauru 0.197 +13.6% 215
New Zealand New Zealand 3.34 +4.72% 35
Oman Oman 0.364 -0.137% 202
Pakistan Pakistan 0.663 -1.82% 149
Panama Panama 1.51 +3.52% 95
Peru Peru 1.59 +3.3% 91
Philippines Philippines 0.636 +11.7% 155
Palau Palau 1.48 +8.32% 96
Papua New Guinea Papua New Guinea 0.516 +2.04% 169
Poland Poland 2.97 +12.1% 40
Puerto Rico Puerto Rico 4.72 +2.22% 5
North Korea North Korea 2.07 +0.401% 71
Portugal Portugal 4.58 +3.67% 7
Paraguay Paraguay 1.04 +2.92% 120
Palestinian Territories Palestinian Territories 0.607 -1.83% 158
French Polynesia French Polynesia 1.9 +4.03% 80
Qatar Qatar 0.161 +8.3% 216
Romania Romania 2.95 +7.37% 43
Russia Russia 1.89 +20.4% 81
Rwanda Rwanda 0.485 +7.51% 177
Saudi Arabia Saudi Arabia 0.442 +3.15% 187
Sudan Sudan 0.555 +2.98% 162
Senegal Senegal 0.565 -2.45% 159
Singapore Singapore 2.16 +11.6% 69
Solomon Islands Solomon Islands 0.555 +0.679% 163
Sierra Leone Sierra Leone 0.472 -2.6% 180
El Salvador El Salvador 1.31 +1.93% 105
San Marino San Marino 4.24 +4.16% 14
Somalia Somalia 0.353 +2.78% 204
Serbia Serbia 3.6 +9.86% 27
South Sudan South Sudan 0.382 +1.04% 199
São Tomé & Príncipe São Tomé & Príncipe 0.546 -1.47% 166
Suriname Suriname 0.989 +3.55% 122
Slovakia Slovakia 2.71 +7.61% 53
Slovenia Slovenia 3.39 +5.96% 34
Sweden Sweden 4.53 +0.0881% 9
Eswatini Eswatini 0.564 +3.81% 160
Sint Maarten Sint Maarten 2.65 +5.95% 55
Seychelles Seychelles 1.07 +2.73% 117
Syria Syria 0.747 +1.65% 142
Turks & Caicos Islands Turks & Caicos Islands 1.73 +1.08% 84
Chad Chad 0.279 +0.779% 210
Togo Togo 0.48 +2.01% 179
Thailand Thailand 2.35 +6.28% 62
Tajikistan Tajikistan 0.393 +8.46% 197
Turkmenistan Turkmenistan 0.285 +22.5% 209
Timor-Leste Timor-Leste 1.16 -0.143% 112
Tonga Tonga 1.13 +2.42% 115
Trinidad & Tobago Trinidad & Tobago 1.83 +7.97% 82
Tunisia Tunisia 1.28 +5.36% 106
Turkey Turkey 1.54 +4.75% 94
Tuvalu Tuvalu 0.912 +4.05% 127
Tanzania Tanzania 0.47 -0.257% 182
Uganda Uganda 0.276 +6.64% 211
Ukraine Ukraine 2 +11.9% 75
Uruguay Uruguay 2.38 +1.01% 61
United States United States 3.21 +4.54% 36
Uzbekistan Uzbekistan 0.638 +2.61% 154
St. Vincent & Grenadines St. Vincent & Grenadines 1.91 +2.45% 79
Venezuela Venezuela 1.48 +3.12% 97
British Virgin Islands British Virgin Islands 1.64 +3.24% 90
U.S. Virgin Islands U.S. Virgin Islands 4.37 -0.576% 10
Vietnam Vietnam 1.05 +8.15% 118
Vanuatu Vanuatu 0.729 +1.31% 144
Samoa Samoa 0.826 +0.507% 134
Kosovo Kosovo 1.57 +2.51% 92
Yemen Yemen 0.388 -1.49% 198
South Africa South Africa 0.738 +6.15% 143
Zambia Zambia 0.215 -0.441% 214
Zimbabwe Zimbabwe 0.489 +2.61% 175

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.7579.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.7579.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))