Population ages 75-79, female (% of female population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 3.45 +5.96% 55
Afghanistan Afghanistan 0.505 +1.26% 203
Angola Angola 0.536 -0.878% 200
Albania Albania 3.12 +4.66% 61
Andorra Andorra 2.99 +2.79% 64
United Arab Emirates United Arab Emirates 0.337 +12.7% 214
Argentina Argentina 2.8 +2.13% 69
Armenia Armenia 2.42 +14.8% 77
American Samoa American Samoa 1.51 +10.2% 113
Antigua & Barbuda Antigua & Barbuda 2.31 +4.44% 82
Australia Australia 3.8 +4.05% 43
Austria Austria 4.21 +1.68% 36
Azerbaijan Azerbaijan 1.3 +17.1% 125
Burundi Burundi 0.465 -0.637% 206
Belgium Belgium 4.42 +3.6% 28
Benin Benin 0.615 -1.62% 180
Burkina Faso Burkina Faso 0.55 -2.27% 194
Bangladesh Bangladesh 1.22 +1.85% 132
Bulgaria Bulgaria 5.77 +4.72% 4
Bahrain Bahrain 0.673 +0.157% 172
Bahamas Bahamas 2.63 -0.135% 74
Bosnia & Herzegovina Bosnia & Herzegovina 4.46 +7.02% 27
Belarus Belarus 3.72 +14.7% 44
Belize Belize 0.855 +5.78% 154
Bermuda Bermuda 4.68 +4.51% 22
Bolivia Bolivia 1.17 -0.203% 134
Brazil Brazil 2.22 +5.55% 83
Barbados Barbados 3.45 +3.85% 54
Brunei Brunei 1.19 +10.1% 133
Bhutan Bhutan 1.23 +0.921% 131
Botswana Botswana 0.805 +3.42% 160
Central African Republic Central African Republic 0.303 +3.68% 216
Canada Canada 4.1 +4.07% 39
Switzerland Switzerland 4.39 +0.953% 29
Chile Chile 2.77 +5.29% 70
China China 2.86 +7.63% 67
Côte d’Ivoire Côte d’Ivoire 0.442 +0.712% 209
Cameroon Cameroon 0.529 -1.43% 201
Congo - Kinshasa Congo - Kinshasa 0.605 -0.759% 183
Congo - Brazzaville Congo - Brazzaville 0.515 +2.01% 202
Colombia Colombia 1.95 +4.22% 95
Comoros Comoros 0.96 -1.97% 145
Cape Verde Cape Verde 1.51 +5.11% 112
Costa Rica Costa Rica 2.42 +4.79% 78
Cuba Cuba 3.64 +1.92% 49
Curaçao Curaçao 3.93 +3.8% 40
Cayman Islands Cayman Islands 1.53 +5.9% 110
Cyprus Cyprus 3.14 +1.94% 60
Czechia Czechia 5.42 +3.57% 6
Germany Germany 4.23 +1.5% 35
Djibouti Djibouti 1.01 +3.5% 142
Dominica Dominica 2.42 +0.392% 79
Denmark Denmark 5.11 +0.0648% 13
Dominican Republic Dominican Republic 1.45 +5.4% 118
Algeria Algeria 1.16 +4.78% 135
Ecuador Ecuador 1.72 +4.61% 100
Egypt Egypt 1.01 +4.57% 141
Eritrea Eritrea 0.925 -0.221% 150
Spain Spain 4.59 +2.44% 24
Estonia Estonia 4.87 +8.32% 19
Ethiopia Ethiopia 0.672 +1.29% 173
Finland Finland 5.98 +6.55% 3
Fiji Fiji 1.32 +2% 124
France France 4.9 +7.19% 16
Faroe Islands Faroe Islands 3.65 +2.65% 47
Micronesia (Federated States of) Micronesia (Federated States of) 1.03 +7.33% 139
Gabon Gabon 0.795 +0.544% 162
United Kingdom United Kingdom 4.47 +2.29% 26
Georgia Georgia 3.2 +10.8% 58
Ghana Ghana 0.701 +0.669% 169
Gibraltar Gibraltar 4.15 +4.32% 37
Guinea Guinea 0.707 -0.0234% 168
Gambia Gambia 0.54 -1.09% 197
Guinea-Bissau Guinea-Bissau 0.613 +4.61% 181
Equatorial Guinea Equatorial Guinea 0.629 +0.787% 177
Greece Greece 5.17 +3.42% 11
Grenada Grenada 2.22 +3.22% 84
Greenland Greenland 1.43 -0.385% 119
Guatemala Guatemala 0.97 +4.11% 144
Guam Guam 2.57 +7.49% 75
Guyana Guyana 1.29 +4.86% 126
Hong Kong SAR China Hong Kong SAR China 3.62 +13.9% 50
Honduras Honduras 0.832 +6.57% 157
Croatia Croatia 4.88 +5.48% 18
Haiti Haiti 0.949 +1.98% 146
Hungary Hungary 4.89 +2.69% 17
Indonesia Indonesia 1.45 +0.121% 117
Isle of Man Isle of Man 5.13 +3.78% 12
India India 1.28 +4% 128
Ireland Ireland 3.34 +3.22% 57
Iran Iran 1.53 +5.82% 111
Iraq Iraq 0.727 +2.36% 166
Iceland Iceland 3.2 +2.83% 59
Israel Israel 2.86 +6.67% 68
Italy Italy 5.31 +4.16% 9
Jamaica Jamaica 1.58 -0.0446% 107
Jordan Jordan 0.814 +4.47% 159
Japan Japan 7.06 +5.96% 1
Kazakhstan Kazakhstan 1.63 +17.2% 104
Kenya Kenya 0.545 +1.3% 196
Kyrgyzstan Kyrgyzstan 0.856 +17.5% 153
Cambodia Cambodia 1.26 +4.97% 129
Kiribati Kiribati 0.872 +0.39% 152
St. Kitts & Nevis St. Kitts & Nevis 1.57 -0.156% 108
South Korea South Korea 3.66 +3.76% 46
Kuwait Kuwait 0.599 +3.24% 184
Laos Laos 0.847 +2.17% 155
Lebanon Lebanon 2.05 +3.36% 90
Liberia Liberia 0.593 -1.44% 186
Libya Libya 1.03 +2.33% 140
St. Lucia St. Lucia 2.02 +1.93% 93
Liechtenstein Liechtenstein 4.37 +1.15% 32
Sri Lanka Sri Lanka 2.74 +5.68% 72
Lesotho Lesotho 0.842 +4.59% 156
Lithuania Lithuania 4.53 +2.93% 25
Luxembourg Luxembourg 3.06 +3.74% 62
Latvia Latvia 4.93 +4.16% 15
Macao SAR China Macao SAR China 2.12 +14.9% 87
Saint Martin (French part) Saint Martin (French part) 3.5 +9.1% 52
Morocco Morocco 1.5 +3.39% 114
Monaco Monaco 6.17 -1.19% 2
Moldova Moldova 2.9 +19.4% 66
Madagascar Madagascar 0.56 +4.87% 192
Maldives Maldives 0.936 +1.24% 148
Mexico Mexico 1.61 +3.29% 105
Marshall Islands Marshall Islands 0.683 +12.3% 171
North Macedonia North Macedonia 3.84 +6.6% 41
Mali Mali 0.475 -2.52% 205
Malta Malta 5.24 +3.09% 10
Myanmar (Burma) Myanmar (Burma) 1.37 +4.41% 121
Montenegro Montenegro 3.55 +7.28% 51
Mongolia Mongolia 0.949 +2.05% 147
Northern Mariana Islands Northern Mariana Islands 1.32 +17.2% 123
Mozambique Mozambique 0.58 +3.77% 189
Mauritania Mauritania 0.591 +0.332% 187
Mauritius Mauritius 2.65 +9.22% 73
Malawi Malawi 0.596 -2.21% 185
Malaysia Malaysia 1.45 +6.6% 116
Namibia Namibia 0.797 +1.87% 161
New Caledonia New Caledonia 2.33 +2.65% 81
Niger Niger 0.497 -2.35% 204
Nigeria Nigeria 0.548 -0.299% 195
Nicaragua Nicaragua 1.14 +5.14% 136
Netherlands Netherlands 4.7 +3.16% 21
Norway Norway 4.34 +1.43% 33
Nepal Nepal 1.29 +3.44% 127
Nauru Nauru 0.401 +13.9% 211
New Zealand New Zealand 3.64 +4.79% 48
Oman Oman 0.652 -0.277% 174
Pakistan Pakistan 0.829 -0.15% 158
Panama Panama 1.86 +3.41% 96
Peru Peru 1.84 +3.73% 97
Philippines Philippines 1.06 +7.17% 138
Palau Palau 2.03 +4.51% 92
Papua New Guinea Papua New Guinea 0.536 +3.01% 199
Poland Poland 4.28 +11.1% 34
Puerto Rico Puerto Rico 5.51 +2.89% 5
North Korea North Korea 3 -1.17% 63
Portugal Portugal 5.39 +3.06% 7
Paraguay Paraguay 1.35 +2.18% 122
Palestinian Territories Palestinian Territories 0.738 +2.77% 165
French Polynesia French Polynesia 2.09 +5.75% 88
Qatar Qatar 0.327 +1.7% 215
Romania Romania 4.37 +7.31% 30
Russia Russia 3.48 +20.3% 53
Rwanda Rwanda 0.758 +4.69% 164
Saudi Arabia Saudi Arabia 0.58 +2.97% 188
Sudan Sudan 0.449 +4.25% 208
Senegal Senegal 0.607 +3.9% 182
Singapore Singapore 2.75 +10.8% 71
Solomon Islands Solomon Islands 0.636 +2.09% 176
Sierra Leone Sierra Leone 0.623 -1.86% 179
El Salvador El Salvador 1.82 +2.37% 98
San Marino San Marino 4.65 +2.87% 23
Somalia Somalia 0.458 +2.45% 207
Serbia Serbia 4.79 +9.89% 20
South Sudan South Sudan 0.571 +0.531% 190
São Tomé & Príncipe São Tomé & Príncipe 0.719 -3% 167
Suriname Suriname 1.58 +0.876% 106
Slovakia Slovakia 4.13 +5.59% 38
Slovenia Slovenia 4.37 +4.15% 31
Sweden Sweden 5.03 +0.434% 14
Eswatini Eswatini 0.927 +2.23% 149
Sint Maarten Sint Maarten 2.36 +7.58% 80
Seychelles Seychelles 1.67 +2.48% 103
Syria Syria 0.916 +2.62% 151
Turks & Caicos Islands Turks & Caicos Islands 2 +5.47% 94
Chad Chad 0.348 +0.45% 213
Togo Togo 0.561 +1.94% 191
Thailand Thailand 2.98 +6.21% 65
Tajikistan Tajikistan 0.54 +11.3% 198
Turkmenistan Turkmenistan 0.762 +9.01% 163
Timor-Leste Timor-Leste 1.55 +2.43% 109
Tonga Tonga 1.4 +3.1% 120
Trinidad & Tobago Trinidad & Tobago 2.5 +7.54% 76
Tunisia Tunisia 1.7 +4.67% 101
Turkey Turkey 2.07 +4.72% 89
Tuvalu Tuvalu 1.46 +5.61% 115
Tanzania Tanzania 0.651 +2.54% 175
Uganda Uganda 0.404 +6.47% 210
Ukraine Ukraine 3.68 +8.43% 45
Uruguay Uruguay 3.44 +0.606% 56
United States United States 3.8 +4.49% 42
Uzbekistan Uzbekistan 0.984 +4.71% 143
St. Vincent & Grenadines St. Vincent & Grenadines 2.2 +4.9% 85
Venezuela Venezuela 2.03 +3.17% 91
British Virgin Islands British Virgin Islands 1.73 +6.08% 99
U.S. Virgin Islands U.S. Virgin Islands 5.35 +2.87% 8
Vietnam Vietnam 1.68 +8.51% 102
Vanuatu Vanuatu 0.629 +8.75% 178
Samoa Samoa 1.14 +1.64% 137
Kosovo Kosovo 2.14 +3.58% 86
Yemen Yemen 0.552 -1.53% 193
South Africa South Africa 1.23 +4.64% 130
Zambia Zambia 0.349 +0.726% 212
Zimbabwe Zimbabwe 0.685 +3.72% 170

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.7579.FE.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.7579.FE.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))