Population ages 70-74, female (% of female population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 5.24 +5.18% 35
Afghanistan Afghanistan 0.788 +0.241% 206
Angola Angola 0.864 +2.21% 199
Albania Albania 4.53 +4.23% 57
Andorra Andorra 3.86 +1.88% 73
United Arab Emirates United Arab Emirates 0.628 -2.16% 216
Argentina Argentina 3.52 +1.32% 78
Armenia Armenia 4.37 +5.01% 59
American Samoa American Samoa 2.39 +5.85% 113
Antigua & Barbuda Antigua & Barbuda 3.44 +5% 79
Australia Australia 4.59 +0.91% 55
Austria Austria 4.9 +0.489% 46
Azerbaijan Azerbaijan 2.6 +7.02% 103
Burundi Burundi 0.859 +3.29% 202
Belgium Belgium 5.12 +1.11% 41
Benin Benin 0.943 +0.693% 192
Burkina Faso Burkina Faso 0.896 +2.07% 197
Bangladesh Bangladesh 1.82 +3.42% 137
Bulgaria Bulgaria 6.76 -1.23% 3
Bahrain Bahrain 1.15 +9.92% 173
Bahamas Bahamas 3.03 +0.685% 87
Bosnia & Herzegovina Bosnia & Herzegovina 6.63 +4.32% 4
Belarus Belarus 5.82 +1.95% 21
Belize Belize 1.45 +4.29% 150
Bermuda Bermuda 5.73 +2.88% 26
Bolivia Bolivia 1.63 +1.71% 141
Brazil Brazil 3.31 +3.78% 83
Barbados Barbados 4.87 +3.53% 48
Brunei Brunei 2.22 +6.82% 119
Bhutan Bhutan 1.89 +4.64% 135
Botswana Botswana 1.27 -0.438% 165
Central African Republic Central African Republic 0.704 +6.13% 212
Canada Canada 5.17 +1.93% 38
Switzerland Switzerland 4.79 +0.221% 51
Chile Chile 3.87 +2.93% 72
China China 4.85 +6.41% 50
Côte d’Ivoire Côte d’Ivoire 0.72 +1.61% 210
Cameroon Cameroon 0.861 +1.62% 201
Congo - Kinshasa Congo - Kinshasa 0.929 -0.029% 194
Congo - Brazzaville Congo - Brazzaville 0.897 +2.88% 196
Colombia Colombia 2.9 +4.48% 95
Comoros Comoros 1.37 +0.584% 155
Cape Verde Cape Verde 2.2 +2.13% 120
Costa Rica Costa Rica 3.35 +4.04% 81
Cuba Cuba 4.56 +2.47% 56
Curaçao Curaçao 5.31 +2.8% 34
Cayman Islands Cayman Islands 2.53 +8.36% 107
Cyprus Cyprus 3.87 +0.707% 70
Czechia Czechia 6.21 +0.162% 12
Germany Germany 5.7 +2.2% 28
Djibouti Djibouti 1.48 +0.121% 148
Dominica Dominica 3.36 +2.97% 80
Denmark Denmark 5.16 -0.713% 40
Dominican Republic Dominican Republic 2.32 +5.33% 118
Algeria Algeria 1.96 +4.43% 130
Ecuador Ecuador 2.44 +2.5% 110
Egypt Egypt 1.74 +3.51% 139
Eritrea Eritrea 1.3 +0.316% 158
Spain Spain 5.04 +0.366% 42
Estonia Estonia 6.15 +0.539% 14
Ethiopia Ethiopia 0.978 +0.769% 188
Finland Finland 6.37 -1.5% 9
Fiji Fiji 2.01 +1.55% 128
France France 5.76 -0.341% 24
Faroe Islands Faroe Islands 4.7 -2.62% 54
Micronesia (Federated States of) Micronesia (Federated States of) 2.02 +5.71% 127
Gabon Gabon 1.23 +1.29% 167
United Kingdom United Kingdom 4.86 -0.469% 49
Georgia Georgia 4.96 +2.13% 44
Ghana Ghana 1.12 +1.48% 176
Gibraltar Gibraltar 4.32 -2.45% 61
Guinea Guinea 1.12 +0.409% 178
Gambia Gambia 0.909 +5.51% 195
Guinea-Bissau Guinea-Bissau 1.15 +3.53% 172
Equatorial Guinea Equatorial Guinea 1.23 +3.67% 168
Greece Greece 5.72 +0.86% 27
Grenada Grenada 3 +3.7% 88
Greenland Greenland 2.76 +8.79% 100
Guatemala Guatemala 1.47 +2.78% 149
Guam Guam 3.82 +3.22% 75
Guyana Guyana 2.02 +3.77% 125
Hong Kong SAR China Hong Kong SAR China 5.52 +5.44% 31
Honduras Honduras 1.45 +3.35% 152
Croatia Croatia 6.59 +2.15% 5
Haiti Haiti 1.53 +2.01% 144
Hungary Hungary 6.54 +3.86% 6
Indonesia Indonesia 2.19 +4.66% 121
Isle of Man Isle of Man 5.75 -2.7% 25
India India 2.18 +4.47% 122
Ireland Ireland 4.1 +1.48% 66
Iran Iran 2.5 +3.96% 108
Iraq Iraq 1.26 +4.24% 166
Iceland Iceland 4.13 +1.63% 65
Israel Israel 3.62 +0.454% 77
Italy Italy 5.77 -0.469% 23
Jamaica Jamaica 2.37 +5.92% 115
Jordan Jordan 1.28 +4.45% 162
Japan Japan 6.77 -5.68% 2
Kazakhstan Kazakhstan 2.91 +4.24% 94
Kenya Kenya 0.833 +2.17% 204
Kyrgyzstan Kyrgyzstan 1.91 +5.57% 134
Cambodia Cambodia 2.14 +3.79% 124
Kiribati Kiribati 1.4 +1.58% 154
St. Kitts & Nevis St. Kitts & Nevis 2.99 +11% 91
South Korea South Korea 4.77 +4.25% 52
Kuwait Kuwait 0.983 +5.46% 187
Laos Laos 1.41 +3.54% 153
Lebanon Lebanon 2.73 +2.39% 102
Liberia Liberia 1.02 +1.82% 183
Libya Libya 1.49 -0.737% 146
St. Lucia St. Lucia 2.81 +2.87% 98
Liechtenstein Liechtenstein 5.16 +0.866% 39
Sri Lanka Sri Lanka 3.86 +1.78% 74
Lesotho Lesotho 1.29 -0.023% 161
Lithuania Lithuania 5.68 -0.509% 29
Luxembourg Luxembourg 3.94 +2.57% 69
Latvia Latvia 6.13 -0.102% 16
Macao SAR China Macao SAR China 3.87 +8.46% 71
Saint Martin (French part) Saint Martin (French part) 4.88 +7.78% 47
Morocco Morocco 2.4 +5.16% 112
Monaco Monaco 5.87 -0.241% 20
Moldova Moldova 5.92 +1.1% 19
Madagascar Madagascar 1.1 +2.85% 179
Maldives Maldives 1.36 +7.14% 156
Mexico Mexico 2.34 +3.43% 117
Marshall Islands Marshall Islands 1.45 +7.38% 151
North Macedonia North Macedonia 5.61 +2.66% 30
Mali Mali 0.774 -0.542% 207
Malta Malta 5.43 -1.95% 32
Myanmar (Burma) Myanmar (Burma) 2.47 +4.04% 109
Montenegro Montenegro 5.43 +2.85% 33
Mongolia Mongolia 1.52 +6.66% 145
Northern Mariana Islands Northern Mariana Islands 2.77 +13.7% 99
Mozambique Mozambique 1.13 +1.95% 174
Mauritania Mauritania 0.952 +1.39% 191
Mauritius Mauritius 4.19 +3.52% 62
Malawi Malawi 0.743 -2.41% 209
Malaysia Malaysia 2.39 +4.01% 114
Namibia Namibia 1.19 +0.882% 169
New Caledonia New Caledonia 3 +2.83% 90
Niger Niger 0.811 +1.31% 205
Nigeria Nigeria 0.933 +1.03% 193
Nicaragua Nicaragua 1.81 +2.28% 138
Netherlands Netherlands 5.18 -0.533% 37
Norway Norway 4.75 +0.0139% 53
Nepal Nepal 1.97 +1.49% 129
Nauru Nauru 1.04 +17.7% 181
New Zealand New Zealand 4.5 +1.36% 58
Oman Oman 0.953 -0.982% 190
Pakistan Pakistan 1.28 +3.12% 163
Panama Panama 2.59 +3.34% 104
Peru Peru 2.54 +2.07% 105
Philippines Philippines 1.84 +3.75% 136
Palau Palau 3.81 +7.16% 76
Papua New Guinea Papua New Guinea 0.986 +3.86% 186
Poland Poland 6.34 +3.09% 10
Puerto Rico Puerto Rico 6.33 +0.268% 11
North Korea North Korea 2.94 -1.76% 92
Portugal Portugal 6.18 +0.356% 13
Paraguay Paraguay 1.92 +2.33% 133
Palestinian Territories Palestinian Territories 1.16 +1.97% 170
French Polynesia French Polynesia 3 +6.53% 89
Qatar Qatar 0.63 +5.85% 215
Romania Romania 6.38 +1.82% 8
Russia Russia 5.8 +2.91% 22
Rwanda Rwanda 1.29 +0.991% 160
Saudi Arabia Saudi Arabia 0.837 +1.55% 203
Sudan Sudan 0.883 +6.58% 198
Senegal Senegal 1.12 +3.22% 175
Singapore Singapore 4.01 +3.38% 68
Solomon Islands Solomon Islands 1.12 +1.77% 177
Sierra Leone Sierra Leone 1.02 +2% 185
El Salvador El Salvador 2.53 +1.92% 106
San Marino San Marino 5.21 +1.21% 36
Somalia Somalia 0.862 +1.97% 200
Serbia Serbia 7.33 +2.4% 1
South Sudan South Sudan 0.96 +3.25% 189
São Tomé & Príncipe São Tomé & Príncipe 1.09 +3.41% 180
Suriname Suriname 2.42 +6.34% 111
Slovakia Slovakia 5.94 +3.2% 18
Slovenia Slovenia 6.15 +3.15% 15
Sweden Sweden 5 -2.02% 43
Eswatini Eswatini 1.35 +2.94% 157
Sint Maarten Sint Maarten 4.03 +5.98% 67
Seychelles Seychelles 2.36 +1.91% 116
Syria Syria 1.49 +1.89% 147
Turks & Caicos Islands Turks & Caicos Islands 3.33 +4.2% 82
Chad Chad 0.667 +1.75% 214
Togo Togo 1.03 +1.69% 182
Thailand Thailand 4.35 +4.5% 60
Tajikistan Tajikistan 1.16 +5.93% 171
Turkmenistan Turkmenistan 1.59 +5.26% 142
Timor-Leste Timor-Leste 1.57 -10% 143
Tonga Tonga 1.94 +3.73% 132
Trinidad & Tobago Trinidad & Tobago 4.13 +5.94% 63
Tunisia Tunisia 2.88 +7.47% 96
Turkey Turkey 3.19 +5.34% 84
Tuvalu Tuvalu 2.02 +1.78% 126
Tanzania Tanzania 1.02 +1.56% 184
Uganda Uganda 0.708 +1.94% 211
Ukraine Ukraine 6.05 +1.95% 17
Uruguay Uruguay 4.13 +2.26% 64
United States United States 4.92 +2.33% 45
Uzbekistan Uzbekistan 1.94 +5.74% 131
St. Vincent & Grenadines St. Vincent & Grenadines 3.17 +3.27% 85
Venezuela Venezuela 2.92 +4.47% 93
British Virgin Islands British Virgin Islands 2.75 +5.56% 101
U.S. Virgin Islands U.S. Virgin Islands 6.45 +1.19% 7
Vietnam Vietnam 2.83 +5.79% 97
Vanuatu Vanuatu 1.3 +6.8% 159
Samoa Samoa 1.66 +3.29% 140
Kosovo Kosovo 3.03 +4.56% 86
Yemen Yemen 0.761 -0.42% 208
South Africa South Africa 2.15 +4.41% 123
Zambia Zambia 0.668 +3.44% 213
Zimbabwe Zimbabwe 1.28 +2.69% 164

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.7074.FE.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.7074.FE.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))