Population ages 65 and above (% of total population)

Source: worldbank.org, 01.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 17.1 +4.2% 52
Afghanistan Afghanistan 2.4 +0.986% 209
Angola Angola 2.85 +1.46% 197
Albania Albania 16.9 +3.81% 53
Andorra Andorra 15.9 +3.42% 59
United Arab Emirates United Arab Emirates 1.77 +4.21% 215
Argentina Argentina 12.4 +1.75% 76
Armenia Armenia 13.7 +3.72% 70
American Samoa American Samoa 8.04 +6.54% 114
Antigua & Barbuda Antigua & Barbuda 11.8 +4.86% 83
Australia Australia 17.7 +1.99% 47
Austria Austria 20.6 +2.19% 28
Azerbaijan Azerbaijan 8.56 +6.81% 106
Burundi Burundi 2.53 +0.857% 207
Belgium Belgium 20.6 +2.05% 29
Benin Benin 3.12 +0.98% 187
Burkina Faso Burkina Faso 2.65 +1.19% 201
Bangladesh Bangladesh 6.5 +2.81% 130
Bulgaria Bulgaria 22 +0.906% 17
Bahrain Bahrain 3.85 +5.92% 167
Bahamas Bahamas 11.8 +2.42% 84
Bosnia & Herzegovina Bosnia & Herzegovina 22.2 +2.72% 15
Belarus Belarus 17.7 +3.54% 48
Belize Belize 5.02 +3.77% 144
Bermuda Bermuda 21.7 +3.98% 19
Bolivia Bolivia 5.64 +1.64% 138
Brazil Brazil 11 +3.91% 90
Barbados Barbados 16.6 +2.84% 56
Brunei Brunei 6.87 +5.48% 121
Bhutan Bhutan 6.49 +1.97% 131
Botswana Botswana 4.04 +1.67% 163
Central African Republic Central African Republic 2.15 +2.66% 212
Canada Canada 19.8 +2.28% 36
Switzerland Switzerland 20 +2.08% 34
Chile Chile 14.1 +3.23% 68
China China 14.7 +2.44% 65
Côte d’Ivoire Côte d’Ivoire 2.61 +1.59% 203
Cameroon Cameroon 2.79 +0.719% 199
Congo - Kinshasa Congo - Kinshasa 3.08 +0.235% 190
Congo - Brazzaville Congo - Brazzaville 2.99 +2.44% 194
Colombia Colombia 9.78 +4.3% 95
Comoros Comoros 4.47 -0.0166% 155
Cape Verde Cape Verde 6.86 +4.24% 122
Costa Rica Costa Rica 12.2 +4.32% 80
Cuba Cuba 16.6 +2.31% 55
Curaçao Curaçao 16.8 +3.07% 54
Cayman Islands Cayman Islands 9 +5.34% 104
Cyprus Cyprus 14.6 +2.05% 66
Czechia Czechia 20.8 +1.46% 25
Germany Germany 23.2 +1.78% 8
Djibouti Djibouti 4.85 +2.43% 146
Dominica Dominica 13 +1.66% 73
Denmark Denmark 20.9 +1.29% 24
Dominican Republic Dominican Republic 7.88 +3.94% 116
Algeria Algeria 6.58 +3.22% 127
Ecuador Ecuador 8.34 +3.1% 108
Egypt Egypt 5.12 +2.95% 143
Eritrea Eritrea 4.2 +1.25% 161
Spain Spain 21.1 +2.38% 22
Estonia Estonia 21.3 +1.83% 21
Ethiopia Ethiopia 3.23 +1.85% 183
Finland Finland 23.9 +1.35% 7
Fiji Fiji 6.49 +2.27% 132
France France 22.1 +1.83% 16
Faroe Islands Faroe Islands 17.7 +0.0652% 46
Micronesia (Federated States of) Micronesia (Federated States of) 5.95 +3.81% 134
Gabon Gabon 4.08 +1.01% 162
United Kingdom United Kingdom 19.5 +1.36% 37
Georgia Georgia 15.6 +2.09% 62
Ghana Ghana 3.71 +2.11% 170
Gibraltar Gibraltar 17.6 +0.83% 49
Guinea Guinea 3.46 +0.409% 177
Gambia Gambia 3.08 +3.37% 189
Guinea-Bissau Guinea-Bissau 3.19 +1.57% 186
Equatorial Guinea Equatorial Guinea 3.69 +1.78% 171
Greece Greece 23.9 +1.95% 6
Grenada Grenada 12.2 +3.11% 79
Greenland Greenland 10.8 +6.81% 91
Guatemala Guatemala 4.85 +2.42% 147
Guam Guam 12.6 +4% 74
Guyana Guyana 6.73 +3.94% 123
Hong Kong SAR China Hong Kong SAR China 22.7 +4.72% 13
Honduras Honduras 4.42 +2.91% 156
Croatia Croatia 23.2 +1.63% 9
Haiti Haiti 4.71 +1.89% 149
Hungary Hungary 21 +0.836% 23
Indonesia Indonesia 7.29 +3.41% 119
Isle of Man Isle of Man 23.2 +1.94% 10
India India 7.15 +3.25% 120
Ireland Ireland 15.9 +2.25% 60
Iran Iran 8.24 +4.08% 110
Iraq Iraq 3.41 +0.521% 178
Iceland Iceland 15.6 +1.93% 61
Israel Israel 12.6 +1.1% 75
Italy Italy 24.6 +1.68% 4
Jamaica Jamaica 8.21 +4.42% 111
Jordan Jordan 4.52 +4.65% 154
Japan Japan 29.8 +0.741% 2
Kazakhstan Kazakhstan 8.65 +4.15% 105
Kenya Kenya 2.97 +1.81% 195
Kyrgyzstan Kyrgyzstan 5.68 +4.7% 137
Cambodia Cambodia 6.16 +3.4% 133
Kiribati Kiribati 4.24 +2.87% 160
St. Kitts & Nevis St. Kitts & Nevis 11.2 +4.95% 89
South Korea South Korea 19.3 +5.12% 38
Kuwait Kuwait 3.1 +5.15% 188
Laos Laos 4.67 +2.87% 150
Lebanon Lebanon 10.1 +3.2% 93
Liberia Liberia 3.3 +0.837% 180
Libya Libya 5.02 +2.89% 145
St. Lucia St. Lucia 9.62 +3.43% 99
Liechtenstein Liechtenstein 20.7 +2.79% 27
Sri Lanka Sri Lanka 12.1 +3.11% 81
Lesotho Lesotho 3.86 +0.774% 166
Lithuania Lithuania 20.2 +1.56% 32
Luxembourg Luxembourg 15.5 +2.45% 63
Latvia Latvia 21.7 +1.89% 20
Macao SAR China Macao SAR China 14.3 +5.85% 67
Saint Martin (French part) Saint Martin (French part) 18.4 +6.99% 42
Morocco Morocco 8.14 +4% 113
Monaco Monaco 36.2 -0.524% 1
Moldova Moldova 16.2 +3.82% 57
Madagascar Madagascar 3.41 +2.1% 179
Maldives Maldives 4.64 +6.79% 152
Mexico Mexico 8.25 +3.28% 109
Marshall Islands Marshall Islands 4.64 +5.9% 151
North Macedonia North Macedonia 18 +2.99% 43
Mali Mali 2.38 -0.885% 210
Malta Malta 20.2 +2.08% 31
Myanmar (Burma) Myanmar (Burma) 7.3 +3.04% 118
Montenegro Montenegro 17.8 +2.1% 45
Mongolia Mongolia 5.14 +5.63% 142
Northern Mariana Islands Northern Mariana Islands 9.75 +11.7% 96
Mozambique Mozambique 2.75 -0.471% 200
Mauritania Mauritania 3.23 +0.407% 184
Mauritius Mauritius 13.5 +4.51% 72
Malawi Malawi 2.59 -0.249% 206
Malaysia Malaysia 7.74 +3.85% 117
Namibia Namibia 3.67 +2.85% 172
New Caledonia New Caledonia 11.4 +3.03% 85
Niger Niger 2.59 +0.908% 204
Nigeria Nigeria 3.05 +0.677% 191
Nicaragua Nicaragua 5.53 +2.87% 139
Netherlands Netherlands 20.5 +1.68% 30
Norway Norway 18.8 +1.36% 40
Nepal Nepal 6.5 +2.25% 129
Nauru Nauru 2.85 +6.43% 198
New Zealand New Zealand 17.2 +2.36% 50
Oman Oman 2.64 -0.614% 202
Pakistan Pakistan 4.28 +2.01% 158
Panama Panama 9.35 +3.27% 101
Peru Peru 9.23 +2.62% 102
Philippines Philippines 5.49 +4.37% 140
Palau Palau 11.3 +4.53% 86
Papua New Guinea Papua New Guinea 3.46 +3.47% 176
Poland Poland 20.1 +2.98% 33
Puerto Rico Puerto Rico 24.7 +1.96% 3
North Korea North Korea 12.4 +3.09% 77
Portugal Portugal 24.5 +1.74% 5
Paraguay Paraguay 6.54 +2.64% 128
Palestinian Territories Palestinian Territories 3.84 +0.927% 169
French Polynesia French Polynesia 11.3 +5.58% 87
Qatar Qatar 1.68 +6.6% 216
Romania Romania 20 +1.15% 35
Russia Russia 17.2 +3.45% 51
Rwanda Rwanda 3.93 +2.73% 164
Saudi Arabia Saudi Arabia 2.95 +4.66% 196
Sudan Sudan 3.3 +2.8% 181
Senegal Senegal 3.62 +0.761% 174
Singapore Singapore 13.7 +4.28% 71
Solomon Islands Solomon Islands 3.64 +0.338% 173
Sierra Leone Sierra Leone 3.24 +1.12% 182
El Salvador El Salvador 8.15 +1.85% 112
San Marino San Marino 22.4 +3.36% 14
Somalia Somalia 2.59 +1.05% 205
Serbia Serbia 22.7 +1.56% 12
South Sudan South Sudan 2.99 +2.72% 193
São Tomé & Príncipe São Tomé & Príncipe 3.9 +0.852% 165
Suriname Suriname 7.9 +3.64% 115
Slovakia Slovakia 18.5 +2.7% 41
Slovenia Slovenia 21.8 +2.06% 18
Sweden Sweden 20.7 +1.02% 26
Eswatini Eswatini 4.26 +2.78% 159
Sint Maarten Sint Maarten 13.9 +3.68% 69
Seychelles Seychelles 8.54 +2.5% 107
Syria Syria 4.74 +1.17% 148
Turks & Caicos Islands Turks & Caicos Islands 11.3 +3.24% 88
Chad Chad 2.1 +1.24% 213
Togo Togo 3.21 +1.57% 185
Thailand Thailand 15.4 +4.38% 64
Tajikistan Tajikistan 3.85 +5.52% 168
Turkmenistan Turkmenistan 4.53 +6.04% 153
Timor-Leste Timor-Leste 5.28 -1.06% 141
Tonga Tonga 6.72 +1.71% 124
Trinidad & Tobago Trinidad & Tobago 12.4 +4.42% 78
Tunisia Tunisia 9.53 +3.96% 100
Turkey Turkey 10.3 +2.83% 92
Tuvalu Tuvalu 6.67 +6.22% 126
Tanzania Tanzania 3.05 +0.0592% 192
Uganda Uganda 2.19 +1.77% 211
Ukraine Ukraine 19 +2.18% 39
Uruguay Uruguay 16 +1.47% 58
United States United States 17.9 +2.85% 44
Uzbekistan Uzbekistan 5.86 +2.98% 136
St. Vincent & Grenadines St. Vincent & Grenadines 11.9 +2.84% 82
Venezuela Venezuela 9.68 +3.7% 97
British Virgin Islands British Virgin Islands 9.62 +4.58% 98
U.S. Virgin Islands U.S. Virgin Islands 22.7 +2.01% 11
Vietnam Vietnam 9.05 +4.94% 103
Vanuatu Vanuatu 4.3 +1.84% 157
Samoa Samoa 5.88 +3.07% 135
Kosovo Kosovo 10.1 +4.46% 94
Yemen Yemen 2.52 +0.619% 208
South Africa South Africa 6.69 +2.69% 125
Zambia Zambia 1.95 +2.52% 214
Zimbabwe Zimbabwe 3.6 -0.461% 175

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.65UP.TO.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.65UP.TO.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))