Population ages 65-69, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 6.13 +1.62% 18
Afghanistan Afghanistan 0.898 +1.03% 208
Angola Angola 1.17 +1.79% 193
Albania Albania 5.62 +3.65% 38
Andorra Andorra 5.39 +4.67% 50
United Arab Emirates United Arab Emirates 0.754 +9.63% 215
Argentina Argentina 3.67 +1.12% 92
Armenia Armenia 4.85 +4.38% 65
American Samoa American Samoa 3.37 +5.55% 103
Antigua & Barbuda Antigua & Barbuda 4.19 +5.81% 84
Australia Australia 4.95 +0.929% 61
Austria Austria 5.74 +4.54% 30
Azerbaijan Azerbaijan 3.62 +8.44% 93
Burundi Burundi 0.988 -0.832% 203
Belgium Belgium 5.78 +2.34% 29
Benin Benin 1.22 +1.66% 187
Burkina Faso Burkina Faso 1.01 +2.32% 202
Bangladesh Bangladesh 2.57 +1.62% 123
Bulgaria Bulgaria 5.91 -0.556% 26
Bahrain Bahrain 1.59 +5.81% 161
Bahamas Bahamas 3.6 +3.88% 94
Bosnia & Herzegovina Bosnia & Herzegovina 6.89 +1.8% 3
Belarus Belarus 5.53 +5.01% 41
Belize Belize 2.02 +3.57% 142
Bermuda Bermuda 6.64 +3.57% 7
Bolivia Bolivia 2.02 +2.47% 141
Brazil Brazil 3.83 +3.33% 88
Barbados Barbados 5.56 +1.66% 39
Brunei Brunei 2.72 +5.26% 120
Bhutan Bhutan 2.4 +1.92% 128
Botswana Botswana 1.53 +0.786% 163
Central African Republic Central African Republic 0.938 -1.33% 206
Canada Canada 5.97 +1.23% 23
Switzerland Switzerland 5.42 +3.71% 48
Chile Chile 4.47 +2.45% 79
China China 4.89 -2.45% 64
Côte d’Ivoire Côte d’Ivoire 1.15 +1.69% 194
Cameroon Cameroon 1.11 +1.18% 197
Congo - Kinshasa Congo - Kinshasa 1.21 +0.293% 192
Congo - Brazzaville Congo - Brazzaville 1.29 +3.84% 180
Colombia Colombia 3.55 +3.82% 96
Comoros Comoros 1.6 +0.392% 160
Cape Verde Cape Verde 2.33 +8.01% 132
Costa Rica Costa Rica 4.02 +4.28% 85
Cuba Cuba 4.65 +1.6% 72
Curaçao Curaçao 5.01 +2.26% 58
Cayman Islands Cayman Islands 3.35 +5.59% 104
Cyprus Cyprus 4.56 +2.68% 75
Czechia Czechia 5.51 -2.42% 42
Germany Germany 6.23 +3.43% 13
Djibouti Djibouti 1.82 +3.23% 148
Dominica Dominica 4.84 +4.34% 66
Denmark Denmark 5.42 +0.444% 47
Dominican Republic Dominican Republic 2.92 +3.37% 112
Algeria Algeria 2.59 +2.21% 122
Ecuador Ecuador 2.77 +2.35% 118
Egypt Egypt 2.1 +2.29% 140
Eritrea Eritrea 1.4 +2.35% 176
Spain Spain 5.66 +3.85% 36
Estonia Estonia 5.41 +1.66% 49
Ethiopia Ethiopia 1.22 +2.32% 188
Finland Finland 6.08 -0.7% 20
Fiji Fiji 2.65 +3.02% 121
France France 5.67 +0.482% 35
Faroe Islands Faroe Islands 4.99 +0.475% 59
Micronesia (Federated States of) Micronesia (Federated States of) 2.43 -0.173% 126
Gabon Gabon 1.52 +1.59% 164
United Kingdom United Kingdom 5.14 +1.6% 54
Georgia Georgia 4.71 +2.5% 71
Ghana Ghana 1.48 +3.44% 168
Gibraltar Gibraltar 4.95 -0.396% 62
Guinea Guinea 1.21 +1.02% 190
Gambia Gambia 1.25 +4.44% 184
Guinea-Bissau Guinea-Bissau 1.07 +0.169% 200
Equatorial Guinea Equatorial Guinea 1.5 +2.33% 167
Greece Greece 5.93 +2.27% 25
Grenada Grenada 4.3 +3.97% 81
Greenland Greenland 5.44 +7.66% 45
Guatemala Guatemala 1.71 +0.592% 154
Guam Guam 4.28 +2.88% 83
Guyana Guyana 2.55 +4.4% 124
Hong Kong SAR China Hong Kong SAR China 8.13 +3.48% 1
Honduras Honduras 1.7 +0.987% 156
Croatia Croatia 6.84 -0.0634% 4
Haiti Haiti 1.81 +1.79% 150
Hungary Hungary 5.7 -4.37% 33
Indonesia Indonesia 2.83 +4.16% 115
Isle of Man Isle of Man 6.17 +1.76% 15
India India 2.75 +2% 119
Ireland Ireland 4.76 +1.44% 68
Iran Iran 3.07 +2.94% 110
Iraq Iraq 1.12 -3.63% 196
Iceland Iceland 4.83 +1% 67
Israel Israel 3.45 -0.758% 99
Italy Italy 6.15 +2.58% 16
Jamaica Jamaica 3.09 +6.07% 108
Jordan Jordan 1.84 +4.7% 147
Japan Japan 5.98 -0.292% 22
Kazakhstan Kazakhstan 3.14 +4.61% 107
Kenya Kenya 1.14 +3.74% 195
Kyrgyzstan Kyrgyzstan 2.35 +4.91% 130
Cambodia Cambodia 2.1 +4.66% 139
Kiribati Kiribati 1.58 +5.98% 162
St. Kitts & Nevis St. Kitts & Nevis 4.75 +2.63% 69
South Korea South Korea 6.55 +6.45% 8
Kuwait Kuwait 1.43 +6.84% 174
Laos Laos 1.93 +2.97% 144
Lebanon Lebanon 3.44 +2.11% 101
Liberia Liberia 1.32 +1.07% 178
Libya Libya 1.82 +9% 149
St. Lucia St. Lucia 3.56 +4.72% 95
Liechtenstein Liechtenstein 6.14 +2.22% 17
Sri Lanka Sri Lanka 4 +1.88% 86
Lesotho Lesotho 1.24 +1.68% 186
Lithuania Lithuania 5.36 +5.25% 51
Luxembourg Luxembourg 4.71 +3.57% 70
Latvia Latvia 5.71 +4.01% 32
Macao SAR China Macao SAR China 6.32 +3.4% 10
Saint Martin (French part) Saint Martin (French part) 5.96 +5.81% 24
Morocco Morocco 3.37 +2.22% 102
Monaco Monaco 7.35 +3.35% 2
Moldova Moldova 5.43 +3.42% 46
Madagascar Madagascar 1.42 +0.956% 175
Maldives Maldives 1.71 +10.1% 153
Mexico Mexico 2.82 +3.16% 116
Marshall Islands Marshall Islands 2.17 +2.48% 138
North Macedonia North Macedonia 6.08 +0.791% 21
Mali Mali 0.934 -0.812% 207
Malta Malta 5.44 +0.722% 44
Myanmar (Burma) Myanmar (Burma) 2.86 +2.44% 113
Montenegro Montenegro 5.8 +0.173% 28
Mongolia Mongolia 1.99 +8.4% 143
Northern Mariana Islands Northern Mariana Islands 4.99 +11.3% 60
Mozambique Mozambique 0.74 -3.36% 216
Mauritania Mauritania 1.29 +0.485% 181
Mauritius Mauritius 4.91 +2.66% 63
Malawi Malawi 0.879 +1.26% 210
Malaysia Malaysia 2.85 +2.62% 114
Namibia Namibia 1.27 +4.48% 182
New Caledonia New Caledonia 3.77 +2.92% 91
Niger Niger 1.11 +0.67% 198
Nigeria Nigeria 1.25 +0.927% 183
Nicaragua Nicaragua 1.86 +2.61% 146
Netherlands Netherlands 5.84 +1.52% 27
Norway Norway 5.24 +0.824% 52
Nepal Nepal 2.51 +1.49% 125
Nauru Nauru 1.11 +3.26% 199
New Zealand New Zealand 5.07 +1.7% 57
Oman Oman 0.811 +0.0153% 212
Pakistan Pakistan 1.71 +2.38% 155
Panama Panama 3.09 +2.7% 109
Peru Peru 2.97 +2.04% 111
Philippines Philippines 2.24 +3.6% 137
Palau Palau 4.6 +3.93% 73
Papua New Guinea Papua New Guinea 1.67 +3.82% 158
Poland Poland 6.1 +0.284% 19
Puerto Rico Puerto Rico 6.37 -0.0329% 9
North Korea North Korea 4.49 +7.71% 78
Portugal Portugal 6.27 +0.827% 12
Paraguay Paraguay 2.3 +2.74% 134
Palestinian Territories Palestinian Territories 1.45 +0.795% 170
French Polynesia French Polynesia 4.29 +4.07% 82
Qatar Qatar 0.824 +10.2% 211
Romania Romania 5.63 -1.81% 37
Russia Russia 5.18 +2.99% 53
Rwanda Rwanda 1.51 +3.2% 165
Saudi Arabia Saudi Arabia 1.24 +8.63% 185
Sudan Sudan 1.51 +0.157% 166
Senegal Senegal 1.44 +0.0879% 172
Singapore Singapore 4.55 +2.87% 76
Solomon Islands Solomon Islands 1.43 +1.03% 173
Sierra Leone Sierra Leone 1.3 +1.82% 179
El Salvador El Salvador 2.36 +1.48% 129
San Marino San Marino 6.17 +5.34% 14
Somalia Somalia 1.04 -0.127% 201
Serbia Serbia 6.67 -3.53% 6
South Sudan South Sudan 1.21 +2.95% 191
São Tomé & Príncipe São Tomé & Príncipe 1.45 +1.97% 171
Suriname Suriname 2.78 +5.35% 117
Slovakia Slovakia 5.73 -0.189% 31
Slovenia Slovenia 6.29 -0.437% 11
Sweden Sweden 5.1 +0.322% 55
Eswatini Eswatini 1.47 +0.609% 169
Sint Maarten Sint Maarten 5.68 +1.38% 34
Seychelles Seychelles 3.34 +4.61% 105
Syria Syria 1.79 +1.36% 151
Turks & Caicos Islands Turks & Caicos Islands 3.77 +6.81% 90
Chad Chad 0.884 +1.42% 209
Togo Togo 1.38 +1.24% 177
Thailand Thailand 5.09 +4.14% 56
Tajikistan Tajikistan 1.78 +6.29% 152
Turkmenistan Turkmenistan 1.87 +8.39% 145
Timor-Leste Timor-Leste 1.6 +1.37% 159
Tonga Tonga 2.27 +0.993% 136
Trinidad & Tobago Trinidad & Tobago 4.6 +1.95% 74
Tunisia Tunisia 3.81 +1.55% 89
Turkey Turkey 3.55 +0.194% 97
Tuvalu Tuvalu 2.3 +7.92% 133
Tanzania Tanzania 0.947 -1.84% 204
Uganda Uganda 0.78 +1.43% 214
Ukraine Ukraine 5.54 +4.13% 40
Uruguay Uruguay 4.35 +1.98% 80
United States United States 5.51 +1.75% 43
Uzbekistan Uzbekistan 2.28 +3.36% 135
St. Vincent & Grenadines St. Vincent & Grenadines 4.53 +4.62% 77
Venezuela Venezuela 3.45 +3.42% 100
British Virgin Islands British Virgin Islands 3.88 +6.05% 87
U.S. Virgin Islands U.S. Virgin Islands 6.83 +2.66% 5
Vietnam Vietnam 3.27 +4.67% 106
Vanuatu Vanuatu 1.67 +0.4% 157
Samoa Samoa 2.41 +3.41% 127
Kosovo Kosovo 3.51 +3.96% 98
Yemen Yemen 0.938 +2.51% 205
South Africa South Africa 2.34 +1.87% 131
Zambia Zambia 0.795 +3.84% 213
Zimbabwe Zimbabwe 1.22 -4.87% 189

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.6569.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.6569.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))