Population ages 65-69, female (% of female population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 7.05 +3.29% 11
Afghanistan Afghanistan 1.17 +1.2% 206
Angola Angola 1.36 +2.04% 197
Albania Albania 6.06 +4.02% 37
Andorra Andorra 5.27 +5.07% 65
United Arab Emirates United Arab Emirates 0.944 +3.9% 216
Argentina Argentina 4.08 +0.647% 92
Armenia Armenia 6.34 +4.95% 32
American Samoa American Samoa 3.54 +7.09% 107
Antigua & Barbuda Antigua & Barbuda 4.86 +6.09% 75
Australia Australia 5.29 +1.12% 63
Austria Austria 6.05 +3.79% 38
Azerbaijan Azerbaijan 4.47 +8.52% 84
Burundi Burundi 1.16 -1.12% 207
Belgium Belgium 5.94 +2.12% 44
Benin Benin 1.4 +1.61% 193
Burkina Faso Burkina Faso 1.36 +1.49% 198
Bangladesh Bangladesh 2.27 +0.744% 144
Bulgaria Bulgaria 6.86 -1.13% 20
Bahrain Bahrain 2.19 +6.15% 146
Bahamas Bahamas 4 +3.93% 95
Bosnia & Herzegovina Bosnia & Herzegovina 7.76 +0.924% 1
Belarus Belarus 7.3 +3.91% 5
Belize Belize 2.18 +4.79% 147
Bermuda Bermuda 7.43 +3.64% 2
Bolivia Bolivia 2.28 +2.36% 143
Brazil Brazil 4.31 +3.05% 87
Barbados Barbados 6.32 +2.33% 33
Brunei Brunei 3.32 +4.55% 114
Bhutan Bhutan 2.69 +1.76% 133
Botswana Botswana 1.6 +1.99% 175
Central African Republic Central African Republic 1.21 +1.91% 204
Canada Canada 6.23 +0.98% 34
Switzerland Switzerland 5.55 +2.83% 55
Chile Chile 4.78 +2.37% 77
China China 5.58 -2.75% 54
Côte d’Ivoire Côte d’Ivoire 1.13 +2.63% 209
Cameroon Cameroon 1.28 +1.14% 202
Congo - Kinshasa Congo - Kinshasa 1.35 +0.406% 199
Congo - Brazzaville Congo - Brazzaville 1.45 +2.94% 190
Colombia Colombia 3.96 +3.63% 99
Comoros Comoros 1.81 +0.0474% 164
Cape Verde Cape Verde 3.06 +5.69% 123
Costa Rica Costa Rica 4.42 +4.16% 85
Cuba Cuba 5.22 +1.25% 67
Curaçao Curaçao 6.62 +2.92% 23
Cayman Islands Cayman Islands 3.9 +4.41% 101
Cyprus Cyprus 4.7 +2.52% 78
Czechia Czechia 6 -3.14% 41
Germany Germany 6.53 +2.73% 27
Djibouti Djibouti 2.08 +3.11% 152
Dominica Dominica 4.65 +4.12% 80
Denmark Denmark 5.6 +0.261% 52
Dominican Republic Dominican Republic 3.34 +3.43% 113
Algeria Algeria 2.67 +2.12% 134
Ecuador Ecuador 3.07 +2.21% 121
Egypt Egypt 2.52 +1.6% 138
Eritrea Eritrea 1.78 +2.11% 165
Spain Spain 6 +3.8% 42
Estonia Estonia 6.6 +0.751% 24
Ethiopia Ethiopia 1.43 +2.68% 191
Finland Finland 6.41 -1.08% 29
Fiji Fiji 3.03 +2.88% 125
France France 6.04 +0.406% 39
Faroe Islands Faroe Islands 5.27 +1.65% 64
Micronesia (Federated States of) Micronesia (Federated States of) 3.07 +2.36% 122
Gabon Gabon 1.68 +1.09% 168
United Kingdom United Kingdom 5.46 +1.27% 56
Georgia Georgia 6.02 +2.47% 40
Ghana Ghana 1.64 +3.12% 171
Gibraltar Gibraltar 5.13 +1.39% 68
Guinea Guinea 1.56 +0.508% 181
Gambia Gambia 1.56 +4.59% 182
Guinea-Bissau Guinea-Bissau 1.67 +0.378% 169
Equatorial Guinea Equatorial Guinea 1.73 -0.0199% 167
Greece Greece 6.54 +3.05% 26
Grenada Grenada 4.37 +5.39% 86
Greenland Greenland 4.63 +7.98% 82
Guatemala Guatemala 2.04 +2.03% 155
Guam Guam 4.63 +1.23% 81
Guyana Guyana 3.01 +4.16% 128
Hong Kong SAR China Hong Kong SAR China 7.13 +3.4% 7
Honduras Honduras 2 +1.92% 158
Croatia Croatia 7.41 +0.526% 3
Haiti Haiti 2.16 +1.53% 148
Hungary Hungary 6.91 -4.6% 18
Indonesia Indonesia 3.29 +3.95% 115
Isle of Man Isle of Man 6.13 +3% 36
India India 3.02 +1.91% 127
Ireland Ireland 4.84 +1.72% 76
Iran Iran 3.22 +3.35% 116
Iraq Iraq 1.49 -3.95% 188
Iceland Iceland 5.06 +1.41% 69
Israel Israel 3.86 -0.835% 105
Italy Italy 6.43 +2.46% 28
Jamaica Jamaica 3.83 +6.73% 106
Jordan Jordan 1.92 +4.82% 162
Japan Japan 5.84 -0.694% 49
Kazakhstan Kazakhstan 4.24 +3.25% 89
Kenya Kenya 1.32 +3.53% 201
Kyrgyzstan Kyrgyzstan 3.03 +5.31% 124
Cambodia Cambodia 2.96 +1.98% 129
Kiribati Kiribati 2.07 +4.18% 153
St. Kitts & Nevis St. Kitts & Nevis 5.34 +8.22% 60
South Korea South Korea 6.96 +6.23% 15
Kuwait Kuwait 1.63 +4.71% 172
Laos Laos 2.14 +3.78% 149
Lebanon Lebanon 3.89 +5.05% 103
Liberia Liberia 1.55 +1.27% 183
Libya Libya 2.03 +6.99% 156
St. Lucia St. Lucia 4.02 +5.16% 93
Liechtenstein Liechtenstein 6.41 +3.72% 31
Sri Lanka Sri Lanka 4.68 +1.84% 79
Lesotho Lesotho 1.84 +0.624% 163
Lithuania Lithuania 6.87 +4.56% 19
Luxembourg Luxembourg 4.87 +2.26% 74
Latvia Latvia 7.06 +2.86% 9
Macao SAR China Macao SAR China 5.75 +3.09% 50
Saint Martin (French part) Saint Martin (French part) 5.94 +5.75% 45
Morocco Morocco 3.44 +3.37% 110
Monaco Monaco 6.95 +4.41% 16
Moldova Moldova 7.05 +2.89% 10
Madagascar Madagascar 1.57 +0.865% 179
Maldives Maldives 2.45 +9.95% 141
Mexico Mexico 3.2 +3.5% 117
Marshall Islands Marshall Islands 2.23 +4.24% 145
North Macedonia North Macedonia 6.41 +0.763% 30
Mali Mali 1.06 -1.16% 211
Malta Malta 5.91 +0.995% 48
Myanmar (Burma) Myanmar (Burma) 3.45 +2.13% 109
Montenegro Montenegro 6.23 +0.395% 35
Mongolia Mongolia 2.82 +8.35% 130
Northern Mariana Islands Northern Mariana Islands 5 +10% 71
Mozambique Mozambique 1.57 -2.03% 177
Mauritania Mauritania 1.41 +1.55% 192
Mauritius Mauritius 5.34 +3.04% 61
Malawi Malawi 1.05 +2.89% 213
Malaysia Malaysia 3.19 +2.49% 118
Namibia Namibia 1.75 +4.74% 166
New Caledonia New Caledonia 3.98 +4.54% 98
Niger Niger 1.21 +0.559% 205
Nigeria Nigeria 1.39 +0.605% 195
Nicaragua Nicaragua 2.3 +2.11% 142
Netherlands Netherlands 5.93 +1.5% 47
Norway Norway 5.36 +0.211% 58
Nepal Nepal 2.54 +0.86% 137
Nauru Nauru 2.11 +4.89% 151
New Zealand New Zealand 5.39 +1.93% 57
Oman Oman 1.33 +0.222% 200
Pakistan Pakistan 1.93 +2.46% 160
Panama Panama 3.34 +2.62% 112
Peru Peru 3.16 +1.64% 120
Philippines Philippines 2.7 +3.45% 132
Palau Palau 5.35 +2.8% 59
Papua New Guinea Papua New Guinea 1.57 +4.55% 178
Poland Poland 6.96 -0.341% 14
Puerto Rico Puerto Rico 6.99 +0.253% 13
North Korea North Korea 4.9 +7.47% 73
Portugal Portugal 6.72 +1.33% 21
Paraguay Paraguay 2.66 +3.18% 135
Palestinian Territories Palestinian Territories 1.62 +2.48% 173
French Polynesia French Polynesia 4.15 +3.83% 90
Qatar Qatar 1.1 +3.44% 210
Romania Romania 6.93 -1.7% 17
Russia Russia 7 +2.14% 12
Rwanda Rwanda 1.92 +3.49% 161
Saudi Arabia Saudi Arabia 1.37 +7.13% 196
Sudan Sudan 1.5 +3.42% 187
Senegal Senegal 1.6 +0.409% 174
Singapore Singapore 5.02 +1.75% 70
Solomon Islands Solomon Islands 1.46 +0.11% 189
Sierra Leone Sierra Leone 1.53 +1.67% 185
El Salvador El Salvador 3.19 +2.26% 119
San Marino San Marino 5.97 +2.79% 43
Somalia Somalia 1.23 -0.128% 203
Serbia Serbia 7.35 -3.53% 4
South Sudan South Sudan 1.51 +2.81% 186
São Tomé & Príncipe São Tomé & Príncipe 1.57 +2.76% 180
Suriname Suriname 3.41 +2.43% 111
Slovakia Slovakia 6.57 -0.881% 25
Slovenia Slovenia 6.68 -0.623% 22
Sweden Sweden 5.25 +0.11% 66
Eswatini Eswatini 2.04 +2.93% 154
Sint Maarten Sint Maarten 5.59 +1.62% 53
Seychelles Seychelles 3.89 +5.7% 102
Syria Syria 2.14 +1.16% 150
Turks & Caicos Islands Turks & Caicos Islands 4.3 +3.09% 88
Chad Chad 1.02 +0.873% 214
Togo Togo 1.54 +1.09% 184
Thailand Thailand 5.7 +3.89% 51
Tajikistan Tajikistan 2 +7.04% 159
Turkmenistan Turkmenistan 2.64 +6.74% 136
Timor-Leste Timor-Leste 1.67 +1.76% 170
Tonga Tonga 2.47 +1.65% 140
Trinidad & Tobago Trinidad & Tobago 5.33 +1.34% 62
Tunisia Tunisia 4.01 +1.73% 94
Turkey Turkey 3.87 -0.0224% 104
Tuvalu Tuvalu 3.51 +12.7% 108
Tanzania Tanzania 1.39 -1.2% 194
Uganda Uganda 1.01 +1.15% 215
Ukraine Ukraine 7.12 +1.83% 8
Uruguay Uruguay 4.91 +1.5% 72
United States United States 5.93 +1.29% 46
Uzbekistan Uzbekistan 2.82 +3.05% 131
St. Vincent & Grenadines St. Vincent & Grenadines 4.57 +4.76% 83
Venezuela Venezuela 3.99 +3.17% 97
British Virgin Islands British Virgin Islands 3.99 +4.34% 96
U.S. Virgin Islands U.S. Virgin Islands 7.27 +1.55% 6
Vietnam Vietnam 4.14 +5.48% 91
Vanuatu Vanuatu 2.01 +1.78% 157
Samoa Samoa 2.48 +4.53% 139
Kosovo Kosovo 3.92 +3.7% 100
Yemen Yemen 1.13 +2.01% 208
South Africa South Africa 3.03 +2.24% 126
Zambia Zambia 1.05 +2.42% 212
Zimbabwe Zimbabwe 1.59 -3.68% 176

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.6569.FE.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.6569.FE.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))