Population ages 60-64, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 7.49 +1.69% 12
Afghanistan Afghanistan 1.3 +1.65% 207
Angola Angola 1.68 +0.25% 194
Albania Albania 6.36 -0.576% 40
Andorra Andorra 7.27 +3.44% 17
United Arab Emirates United Arab Emirates 1.95 +10.2% 174
Argentina Argentina 4.33 +0.798% 104
Armenia Armenia 6 -2.37% 57
American Samoa American Samoa 4.69 +5.11% 96
Antigua & Barbuda Antigua & Barbuda 5.46 +2.72% 77
Australia Australia 5.61 +0.064% 72
Austria Austria 7.37 +3.29% 16
Azerbaijan Azerbaijan 5.22 +0.804% 87
Burundi Burundi 1.26 -0.557% 212
Belgium Belgium 6.71 +1.42% 32
Benin Benin 1.76 +1.8% 191
Burkina Faso Burkina Faso 1.47 +1.42% 202
Bangladesh Bangladesh 3.17 +0.903% 132
Bulgaria Bulgaria 6.49 -0.228% 36
Bahrain Bahrain 2.53 +3.8% 154
Bahamas Bahamas 5.07 +4.76% 91
Bosnia & Herzegovina Bosnia & Herzegovina 7.74 -0.761% 6
Belarus Belarus 6.77 -1.43% 29
Belize Belize 2.92 +2.7% 144
Bermuda Bermuda 8.15 +2.42% 3
Bolivia Bolivia 2.78 +2.03% 147
Brazil Brazil 4.88 +2.05% 93
Barbados Barbados 6.44 +0.568% 39
Brunei Brunei 3.8 +2.77% 114
Bhutan Bhutan 3.01 +2.31% 139
Botswana Botswana 2.02 +2.75% 170
Central African Republic Central African Republic 1.23 -3.31% 214
Canada Canada 6.73 -0.111% 30
Switzerland Switzerland 6.88 +3.71% 23
Chile Chile 5.33 +1.54% 82
China China 5.7 +12.9% 68
Côte d’Ivoire Côte d’Ivoire 1.68 +1.54% 195
Cameroon Cameroon 1.57 +0.892% 199
Congo - Kinshasa Congo - Kinshasa 1.66 +0.0414% 198
Congo - Brazzaville Congo - Brazzaville 1.97 +2.27% 173
Colombia Colombia 4.64 +2.43% 97
Comoros Comoros 2.18 +1.81% 165
Cape Verde Cape Verde 3.48 +4.17% 124
Costa Rica Costa Rica 5.12 +2.1% 89
Cuba Cuba 7.19 +8.78% 19
Curaçao Curaçao 6.23 +1.44% 45
Cayman Islands Cayman Islands 5.48 +6.95% 76
Cyprus Cyprus 5.23 -0.495% 86
Czechia Czechia 5.71 +3.83% 67
Germany Germany 7.81 +3.1% 5
Djibouti Djibouti 2.62 +3.29% 151
Dominica Dominica 6.05 +0.82% 55
Denmark Denmark 6.28 +2.83% 43
Dominican Republic Dominican Republic 3.77 +1.44% 116
Algeria Algeria 3.45 +3.2% 126
Ecuador Ecuador 3.5 +2.39% 123
Egypt Egypt 2.96 +1.75% 142
Eritrea Eritrea 2 +1.71% 172
Spain Spain 6.88 +2.9% 22
Estonia Estonia 6.2 -0.0224% 47
Ethiopia Ethiopia 1.79 +1.79% 188
Finland Finland 6.47 +0.806% 37
Fiji Fiji 3.87 +1.45% 112
France France 6.2 +0.604% 48
Faroe Islands Faroe Islands 5.65 +1.24% 71
Micronesia (Federated States of) Micronesia (Federated States of) 3.1 +0.377% 135
Gabon Gabon 2.16 +1.94% 166
United Kingdom United Kingdom 5.87 +0.632% 62
Georgia Georgia 5.75 -0.973% 65
Ghana Ghana 2.27 +3.9% 162
Gibraltar Gibraltar 5.77 +1.96% 64
Guinea Guinea 1.68 +0.982% 196
Gambia Gambia 1.92 +2.85% 178
Guinea-Bissau Guinea-Bissau 1.45 +1.15% 203
Equatorial Guinea Equatorial Guinea 2.38 +3.5% 158
Greece Greece 6.44 +0.873% 38
Grenada Grenada 5.38 +0.558% 81
Greenland Greenland 7.53 +2.83% 10
Guatemala Guatemala 2.05 +0.684% 169
Guam Guam 5.44 +1.13% 79
Guyana Guyana 3.6 +1.28% 120
Hong Kong SAR China Hong Kong SAR China 8.67 -0.647% 1
Honduras Honduras 2.22 +1.14% 164
Croatia Croatia 7.15 -0.974% 20
Haiti Haiti 2.48 +1.69% 155
Hungary Hungary 5.41 -1.11% 80
Indonesia Indonesia 4.03 +2.79% 110
Isle of Man Isle of Man 7.45 +2.69% 13
India India 3.54 +1.57% 122
Ireland Ireland 5.45 +1.01% 78
Iran Iran 3.92 +1.74% 111
Iraq Iraq 1.83 +9% 185
Iceland Iceland 5.29 -1.01% 84
Israel Israel 3.79 -0.527% 115
Italy Italy 7.37 +3.19% 15
Jamaica Jamaica 4.34 +2.76% 103
Jordan Jordan 2.82 +5.7% 146
Japan Japan 6.32 +1.26% 42
Kazakhstan Kazakhstan 4.18 -0.209% 106
Kenya Kenya 1.77 +2.93% 190
Kyrgyzstan Kyrgyzstan 3.46 +1.06% 125
Cambodia Cambodia 3.17 +3.05% 131
Kiribati Kiribati 2.7 +4.74% 149
St. Kitts & Nevis St. Kitts & Nevis 5.87 +0.737% 61
South Korea South Korea 8.07 +0.215% 4
Kuwait Kuwait 2.83 +7.43% 145
Laos Laos 2.67 +1.75% 150
Lebanon Lebanon 4.38 +2.69% 101
Liberia Liberia 1.87 +0.91% 184
Libya Libya 3.04 +4.71% 137
St. Lucia St. Lucia 5.08 +3.58% 90
Liechtenstein Liechtenstein 7.53 +1.94% 11
Sri Lanka Sri Lanka 4.8 +0.222% 95
Lesotho Lesotho 1.66 -1.36% 197
Lithuania Lithuania 6.86 -1.17% 24
Luxembourg Luxembourg 6.14 +3.46% 52
Latvia Latvia 6.72 -0.89% 31
Macao SAR China Macao SAR China 6.59 -1.33% 34
Saint Martin (French part) Saint Martin (French part) 7.55 +7.81% 9
Morocco Morocco 4.1 +0.246% 108
Monaco Monaco 7.44 -1.49% 14
Moldova Moldova 6.2 -3.98% 49
Madagascar Madagascar 1.89 +0.242% 182
Maldives Maldives 2.46 +3.13% 157
Mexico Mexico 3.71 +2.3% 119
Marshall Islands Marshall Islands 2.98 +4.01% 140
North Macedonia North Macedonia 6.58 -0.149% 35
Mali Mali 1.27 +0.212% 210
Malta Malta 5.69 -1.21% 69
Myanmar (Burma) Myanmar (Burma) 3.87 +1.97% 113
Montenegro Montenegro 6.2 -1.24% 50
Mongolia Mongolia 3.19 +3.21% 130
Northern Mariana Islands Northern Mariana Islands 7.25 +5.85% 18
Mozambique Mozambique 1.02 +2.05% 216
Mauritania Mauritania 1.76 -0.0911% 192
Mauritius Mauritius 6.16 +2.2% 51
Malawi Malawi 1.23 +0.217% 213
Malaysia Malaysia 3.72 +1.57% 118
Namibia Namibia 1.93 +2.02% 176
New Caledonia New Caledonia 4.98 +3.4% 92
Niger Niger 1.55 +0.256% 200
Nigeria Nigeria 1.74 +0.873% 193
Nicaragua Nicaragua 2.55 +3.14% 152
Netherlands Netherlands 6.81 +1.17% 28
Norway Norway 5.84 +0.749% 63
Nepal Nepal 3.09 +1.07% 136
Nauru Nauru 1.9 +9.38% 181
New Zealand New Zealand 5.89 +0.448% 60
Oman Oman 1.51 +0.615% 201
Pakistan Pakistan 2.33 +0.83% 159
Panama Panama 4.04 +2.96% 109
Peru Peru 3.72 +1.92% 117
Philippines Philippines 3.12 +1.91% 133
Palau Palau 6.1 +1.83% 54
Papua New Guinea Papua New Guinea 2.53 +2.18% 153
Poland Poland 6 -3.06% 58
Puerto Rico Puerto Rico 6.81 -0.448% 27
North Korea North Korea 5.59 +2.28% 73
Portugal Portugal 6.81 +0.551% 25
Paraguay Paraguay 3.19 +3.03% 129
Palestinian Territories Palestinian Territories 2.01 +1.23% 171
French Polynesia French Polynesia 5.48 +3.85% 75
Qatar Qatar 1.77 +5.41% 189
Romania Romania 5.15 -2.71% 88
Russia Russia 6.24 -1.43% 44
Rwanda Rwanda 1.93 -3.42% 177
Saudi Arabia Saudi Arabia 2.32 +4.47% 160
Sudan Sudan 1.91 -0.524% 180
Senegal Senegal 1.91 +1.81% 179
Singapore Singapore 5.32 +0.531% 83
Solomon Islands Solomon Islands 2.09 +2.62% 168
Sierra Leone Sierra Leone 1.88 +1.75% 183
El Salvador El Salvador 2.94 +1.46% 143
San Marino San Marino 8.32 +5.06% 2
Somalia Somalia 1.42 -0.158% 204
Serbia Serbia 6.64 -1.49% 33
South Sudan South Sudan 1.82 +2.62% 186
São Tomé & Príncipe São Tomé & Príncipe 2.12 +0.541% 167
Suriname Suriname 4.23 +4.11% 105
Slovakia Slovakia 6.11 +0.417% 53
Slovenia Slovenia 6.81 +0.823% 26
Sweden Sweden 5.65 +2.63% 70
Eswatini Eswatini 1.8 -1.02% 187
Sint Maarten Sint Maarten 7.6 +3.54% 8
Seychelles Seychelles 4.15 +0.861% 107
Syria Syria 2.46 +1.19% 156
Turks & Caicos Islands Turks & Caicos Islands 5.71 +2.12% 66
Chad Chad 1.33 +1.47% 206
Togo Togo 1.95 +1.62% 175
Thailand Thailand 6.33 +1.89% 41
Tajikistan Tajikistan 2.74 +1.19% 148
Turkmenistan Turkmenistan 2.98 +1.84% 141
Timor-Leste Timor-Leste 2.24 +1.77% 163
Tonga Tonga 3.03 +3.51% 138
Trinidad & Tobago Trinidad & Tobago 6.05 +2.16% 56
Tunisia Tunisia 4.81 +3.4% 94
Turkey Turkey 4.62 +4.96% 98
Tuvalu Tuvalu 3.57 +2.91% 121
Tanzania Tanzania 1.27 +1.1% 209
Uganda Uganda 1.17 +2.11% 215
Ukraine Ukraine 7.07 -0.174% 21
Uruguay Uruguay 5.27 +1.75% 85
United States United States 6.21 -0.457% 46
Uzbekistan Uzbekistan 3.4 +1.81% 127
St. Vincent & Grenadines St. Vincent & Grenadines 5.96 +2.74% 59
Venezuela Venezuela 4.36 +1.48% 102
British Virgin Islands British Virgin Islands 5.51 +1.37% 74
U.S. Virgin Islands U.S. Virgin Islands 7.64 -0.00589% 7
Vietnam Vietnam 4.54 +3.88% 99
Vanuatu Vanuatu 2.31 +1.92% 161
Samoa Samoa 3.25 +0.782% 128
Kosovo Kosovo 4.47 +2.91% 100
Yemen Yemen 1.41 +2.43% 205
South Africa South Africa 3.1 -0.0436% 134
Zambia Zambia 1.27 +3.51% 211
Zimbabwe Zimbabwe 1.29 -4.28% 208

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.6064.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.6064.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))