Population ages 60-64, female (% of female population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 8.01 +0.393% 5
Afghanistan Afghanistan 1.61 +1.16% 208
Angola Angola 1.91 +0.934% 196
Albania Albania 6.85 +0.346% 37
Andorra Andorra 7.15 +3.18% 29
United Arab Emirates United Arab Emirates 2.03 +9.52% 189
Argentina Argentina 4.53 +0.609% 107
Armenia Armenia 7.35 -2.7% 20
American Samoa American Samoa 4.97 +4.82% 101
Antigua & Barbuda Antigua & Barbuda 6.29 +2.6% 55
Australia Australia 5.85 -0.173% 67
Austria Austria 7.32 +3.12% 22
Azerbaijan Azerbaijan 6.08 +1.36% 61
Burundi Burundi 1.41 -0.868% 214
Belgium Belgium 6.6 +1.1% 47
Benin Benin 1.96 +1.69% 192
Burkina Faso Burkina Faso 1.83 +1.04% 198
Bangladesh Bangladesh 2.86 +2.14% 152
Bulgaria Bulgaria 6.69 -0.833% 45
Bahrain Bahrain 3.28 +2.76% 138
Bahamas Bahamas 5.44 +4.42% 88
Bosnia & Herzegovina Bosnia & Herzegovina 8.18 -0.282% 3
Belarus Belarus 7.74 -1.8% 10
Belize Belize 3.08 +2.91% 144
Bermuda Bermuda 8.08 -0.295% 4
Bolivia Bolivia 2.99 +1.75% 147
Brazil Brazil 5.25 +1.92% 95
Barbados Barbados 7.11 +0.769% 30
Brunei Brunei 4.3 +1.43% 112
Bhutan Bhutan 3.17 +1.5% 142
Botswana Botswana 2.14 +3.36% 178
Central African Republic Central African Republic 1.75 -0.41% 201
Canada Canada 6.83 -0.274% 40
Switzerland Switzerland 6.79 +3.44% 42
Chile Chile 5.57 +1.45% 78
China China 6.15 +12.6% 60
Côte d’Ivoire Côte d’Ivoire 1.65 +1.57% 204
Cameroon Cameroon 1.72 +0.829% 202
Congo - Kinshasa Congo - Kinshasa 1.81 +0.127% 199
Congo - Brazzaville Congo - Brazzaville 2.1 +2.79% 182
Colombia Colombia 5 +2.18% 99
Comoros Comoros 2.27 +1.3% 170
Cape Verde Cape Verde 3.94 +2.91% 124
Costa Rica Costa Rica 5.5 +2.1% 85
Cuba Cuba 7.68 +8.78% 11
Curaçao Curaçao 7.63 +1.15% 13
Cayman Islands Cayman Islands 5.48 +4.48% 86
Cyprus Cyprus 5.52 +0.965% 83
Czechia Czechia 5.69 +3.15% 74
Germany Germany 7.79 +2.84% 9
Djibouti Djibouti 2.88 +3.21% 151
Dominica Dominica 5.75 +3.09% 72
Denmark Denmark 6.29 +2.51% 56
Dominican Republic Dominican Republic 4.14 +1.36% 115
Algeria Algeria 3.44 +3.18% 136
Ecuador Ecuador 3.76 +2.2% 130
Egypt Egypt 3.23 +1.07% 141
Eritrea Eritrea 2.43 +1.45% 166
Spain Spain 7.03 +2.54% 32
Estonia Estonia 6.57 -1.19% 48
Ethiopia Ethiopia 2.05 +2.11% 186
Finland Finland 6.51 +0.525% 49
Fiji Fiji 4.11 +1.67% 116
France France 6.34 +0.506% 54
Faroe Islands Faroe Islands 5.72 -1.5% 73
Micronesia (Federated States of) Micronesia (Federated States of) 3.67 -0.363% 132
Gabon Gabon 2.24 +1.47% 175
United Kingdom United Kingdom 6.17 +1.33% 59
Georgia Georgia 6.9 -0.145% 36
Ghana Ghana 2.48 +4.16% 164
Gibraltar Gibraltar 5.87 -0.627% 66
Guinea Guinea 2.04 +0.565% 187
Gambia Gambia 2.27 +2.14% 169
Guinea-Bissau Guinea-Bissau 2.04 -0.897% 188
Equatorial Guinea Equatorial Guinea 2.45 +2.02% 165
Greece Greece 7 +0.989% 33
Grenada Grenada 5.4 +0.531% 89
Greenland Greenland 7.22 +5.73% 25
Guatemala Guatemala 2.54 +1.09% 159
Guam Guam 5.51 +1.03% 84
Guyana Guyana 3.96 +1.72% 123
Hong Kong SAR China Hong Kong SAR China 8.25 +2.66% 1
Honduras Honduras 2.56 +1.71% 158
Croatia Croatia 7.38 -0.973% 19
Haiti Haiti 2.77 +1.55% 155
Hungary Hungary 5.8 -2.16% 70
Indonesia Indonesia 4.38 +2.65% 109
Isle of Man Isle of Man 7.4 +2.78% 18
India India 3.77 +1.57% 129
Ireland Ireland 5.56 +1.47% 79
Iran Iran 4.06 +1.65% 119
Iraq Iraq 2.26 +8.2% 171
Iceland Iceland 5.63 +0.0495% 77
Israel Israel 4.08 -1.16% 118
Italy Italy 7.48 +3.09% 15
Jamaica Jamaica 5.19 +2.62% 97
Jordan Jordan 2.77 +4.91% 154
Japan Japan 5.95 +1.08% 63
Kazakhstan Kazakhstan 4.86 -0.957% 103
Kenya Kenya 1.92 +2.53% 193
Kyrgyzstan Kyrgyzstan 4.08 +0.774% 117
Cambodia Cambodia 3.72 +1.17% 131
Kiribati Kiribati 3.23 +4.53% 140
St. Kitts & Nevis St. Kitts & Nevis 5.89 -2.19% 65
South Korea South Korea 8.21 -0.217% 2
Kuwait Kuwait 2.65 +4.95% 156
Laos Laos 2.98 +2.41% 149
Lebanon Lebanon 4.74 +1.69% 106
Liberia Liberia 2.13 +1.09% 180
Libya Libya 3.25 +5.38% 139
St. Lucia St. Lucia 5.45 +3.73% 87
Liechtenstein Liechtenstein 7.8 +2.87% 8
Sri Lanka Sri Lanka 5.31 +0.169% 92
Lesotho Lesotho 2.25 -1.53% 172
Lithuania Lithuania 7.66 -2.05% 12
Luxembourg Luxembourg 5.98 +2.92% 62
Latvia Latvia 7.41 -1.14% 17
Macao SAR China Macao SAR China 7.07 +3.96% 31
Saint Martin (French part) Saint Martin (French part) 7.2 +7.64% 26
Morocco Morocco 4.32 +1.69% 111
Monaco Monaco 7.16 -0.891% 28
Moldova Moldova 7.33 -3.65% 21
Madagascar Madagascar 2.03 +0.182% 190
Maldives Maldives 3.47 +2.56% 134
Mexico Mexico 4.16 +2.65% 114
Marshall Islands Marshall Islands 3.09 +7.73% 143
North Macedonia North Macedonia 6.75 +0.294% 43
Mali Mali 1.38 -0.127% 216
Malta Malta 5.91 -2.55% 64
Myanmar (Burma) Myanmar (Burma) 4.35 +1.7% 110
Montenegro Montenegro 6.61 -0.25% 46
Mongolia Mongolia 4.04 +2.5% 120
Northern Mariana Islands Northern Mariana Islands 6.72 +6.38% 44
Mozambique Mozambique 1.71 -4.02% 203
Mauritania Mauritania 1.92 +1.05% 194
Mauritius Mauritius 6.5 +2.11% 50
Malawi Malawi 1.59 +3.35% 210
Malaysia Malaysia 4.02 +1.68% 121
Namibia Namibia 2.51 +0.914% 163
New Caledonia New Caledonia 5.03 +1.92% 98
Niger Niger 1.62 +0.169% 207
Nigeria Nigeria 1.87 +0.527% 197
Nicaragua Nicaragua 2.98 +2.47% 150
Netherlands Netherlands 6.8 +1.19% 41
Norway Norway 5.78 +0.67% 71
Nepal Nepal 3.08 +1.72% 145
Nauru Nauru 2.63 +0.0185% 157
New Zealand New Zealand 6.24 +0.62% 58
Oman Oman 1.92 -0.0299% 195
Pakistan Pakistan 2.52 +0.848% 162
Panama Panama 4.28 +2.95% 113
Peru Peru 3.81 +1.37% 127
Philippines Philippines 3.46 +1.76% 135
Palau Palau 6.85 +1.82% 39
Papua New Guinea Papua New Guinea 2.4 +4.05% 167
Poland Poland 6.24 -3.69% 57
Puerto Rico Puerto Rico 7.29 -0.187% 23
North Korea North Korea 5.83 +2.17% 68
Portugal Portugal 7.16 +0.925% 27
Paraguay Paraguay 3.56 +2.92% 133
Palestinian Territories Palestinian Territories 2.17 +2.26% 176
French Polynesia French Polynesia 5.36 +4.79% 90
Qatar Qatar 1.8 +1.92% 200
Romania Romania 5.56 -4.44% 80
Russia Russia 7.27 -2.45% 24
Rwanda Rwanda 2.36 -3.43% 168
Saudi Arabia Saudi Arabia 2.14 +3.37% 179
Sudan Sudan 2.07 +1.57% 185
Senegal Senegal 2.01 +0.657% 191
Singapore Singapore 5.53 +0.542% 81
Solomon Islands Solomon Islands 2.08 +3.57% 184
Sierra Leone Sierra Leone 2.09 +1.49% 183
El Salvador El Salvador 3.98 +2.44% 122
San Marino San Marino 7.9 +6.84% 7
Somalia Somalia 1.63 -0.173% 206
Serbia Serbia 6.96 -1.45% 34
South Sudan South Sudan 2.16 +2.64% 177
São Tomé & Príncipe São Tomé & Príncipe 2.25 +2.11% 174
Suriname Suriname 4.45 +3.24% 108
Slovakia Slovakia 6.37 +0.0106% 51
Slovenia Slovenia 6.92 +1.1% 35
Sweden Sweden 5.67 +2.5% 75
Eswatini Eswatini 2.54 +0.256% 161
Sint Maarten Sint Maarten 7.47 +5.93% 16
Seychelles Seychelles 5.26 +3% 93
Syria Syria 2.83 +0.926% 153
Turks & Caicos Islands Turks & Caicos Islands 5.65 +3.4% 76
Chad Chad 1.49 +1.05% 213
Togo Togo 2.11 +1.46% 181
Thailand Thailand 6.85 +2.08% 38
Tajikistan Tajikistan 2.99 +1.87% 148
Turkmenistan Turkmenistan 3.78 +1.37% 128
Timor-Leste Timor-Leste 2.25 +1.23% 173
Tonga Tonga 3 -0.101% 146
Trinidad & Tobago Trinidad & Tobago 6.34 +0.656% 53
Tunisia Tunisia 4.97 +4.18% 100
Turkey Turkey 4.83 +5.34% 104
Tuvalu Tuvalu 5.31 +3.23% 91
Tanzania Tanzania 1.63 -1.96% 205
Uganda Uganda 1.4 +1.4% 215
Ukraine Ukraine 7.5 -1.51% 14
Uruguay Uruguay 5.52 +1.33% 82
United States United States 6.35 -0.641% 52
Uzbekistan Uzbekistan 3.86 +1.54% 125
St. Vincent & Grenadines St. Vincent & Grenadines 5.81 +3.02% 69
Venezuela Venezuela 4.79 +1.37% 105
British Virgin Islands British Virgin Islands 5.25 +2.57% 94
U.S. Virgin Islands U.S. Virgin Islands 7.96 +1.03% 6
Vietnam Vietnam 5.21 +1.81% 96
Vanuatu Vanuatu 2.54 +0.151% 160
Samoa Samoa 3.32 +1.24% 137
Kosovo Kosovo 4.92 +3.81% 102
Yemen Yemen 1.6 +2.02% 209
South Africa South Africa 3.82 +0.593% 126
Zambia Zambia 1.52 +2.44% 212
Zimbabwe Zimbabwe 1.58 -4.66% 211

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.6064.FE.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.6064.FE.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))