Population ages 55-59, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 7.52 -2.71% 19
Afghanistan Afghanistan 1.86 +2.4% 208
Angola Angola 2.17 -0.204% 196
Albania Albania 5.97 -1.63% 75
Andorra Andorra 8.41 +0.186% 5
United Arab Emirates United Arab Emirates 3.48 +0.282% 151
Argentina Argentina 4.73 +0.59% 112
Armenia Armenia 5.35 -4.87% 95
American Samoa American Samoa 6.22 +3.38% 70
Antigua & Barbuda Antigua & Barbuda 6.62 -0.0984% 46
Australia Australia 5.72 -0.584% 81
Austria Austria 7.97 -0.374% 10
Azerbaijan Azerbaijan 5.48 -0.989% 90
Burundi Burundi 1.7 +2.47% 213
Belgium Belgium 6.92 -1.25% 36
Benin Benin 2.33 +0.733% 190
Burkina Faso Burkina Faso 1.98 +1.37% 203
Bangladesh Bangladesh 3.78 +0.764% 141
Bulgaria Bulgaria 6.92 +2.57% 37
Bahrain Bahrain 3.95 +2.91% 137
Bahamas Bahamas 6.37 +1.44% 62
Bosnia & Herzegovina Bosnia & Herzegovina 7.15 -3.04% 29
Belarus Belarus 6.36 -2.29% 63
Belize Belize 3.68 +1.43% 143
Bermuda Bermuda 7.93 -2.87% 11
Bolivia Bolivia 3.56 +1.77% 148
Brazil Brazil 5.49 +0.106% 89
Barbados Barbados 6.56 -1.25% 50
Brunei Brunei 4.93 +3.63% 110
Bhutan Bhutan 4 +3.67% 133
Botswana Botswana 2.81 +2.46% 171
Central African Republic Central African Republic 1.5 -2.49% 216
Canada Canada 6.3 -3.76% 65
Switzerland Switzerland 7.58 -1.02% 17
Chile Chile 6.03 +0.958% 73
China China 7.9 +0.93% 13
Côte d’Ivoire Côte d’Ivoire 2.35 +1.88% 189
Cameroon Cameroon 2.15 +2.15% 197
Congo - Kinshasa Congo - Kinshasa 2.14 -0.34% 198
Congo - Brazzaville Congo - Brazzaville 2.73 +1.63% 174
Colombia Colombia 5.33 +0.0401% 97
Comoros Comoros 2.96 +2.39% 166
Cape Verde Cape Verde 4.14 +0.392% 128
Costa Rica Costa Rica 5.51 -0.722% 86
Cuba Cuba 8.58 -0.83% 4
Curaçao Curaçao 6.35 -2.27% 64
Cayman Islands Cayman Islands 7.3 +1.36% 25
Cyprus Cyprus 5.72 +1.04% 82
Czechia Czechia 6.4 -0.464% 59
Germany Germany 8.21 -1.54% 7
Djibouti Djibouti 3.58 +3.12% 147
Dominica Dominica 7 +1.58% 34
Denmark Denmark 6.99 -1.74% 35
Dominican Republic Dominican Republic 4.38 +0.483% 120
Algeria Algeria 4.46 +2.47% 119
Ecuador Ecuador 4.29 +2.07% 125
Egypt Egypt 3.74 +0.872% 142
Eritrea Eritrea 2.56 +1.01% 178
Spain Spain 7.8 +0.667% 15
Estonia Estonia 6.26 +0.945% 67
Ethiopia Ethiopia 2.33 +0.615% 191
Finland Finland 6.5 -1.69% 52
Fiji Fiji 4.61 -1.06% 115
France France 6.4 -0.992% 60
Faroe Islands Faroe Islands 6.45 -1.7% 54
Micronesia (Federated States of) Micronesia (Federated States of) 3.44 -2.3% 153
Gabon Gabon 2.92 +2.04% 167
United Kingdom United Kingdom 6.42 +0.75% 57
Georgia Georgia 5.53 -2.19% 85
Ghana Ghana 2.99 +1.51% 164
Gibraltar Gibraltar 6.38 -2.78% 61
Guinea Guinea 2.12 -0.142% 199
Gambia Gambia 2.51 +0.171% 181
Guinea-Bissau Guinea-Bissau 2.04 +3.54% 201
Equatorial Guinea Equatorial Guinea 3.12 +0.65% 161
Greece Greece 7.38 +3.5% 22
Grenada Grenada 5.27 -3.23% 99
Greenland Greenland 8.31 -2.31% 6
Guatemala Guatemala 2.58 +1.84% 177
Guam Guam 5.82 -1.73% 78
Guyana Guyana 4.34 +0.127% 122
Hong Kong SAR China Hong Kong SAR China 7.42 -3.55% 21
Honduras Honduras 2.9 +2.49% 168
Croatia Croatia 7.22 -0.858% 27
Haiti Haiti 3.21 +1.44% 158
Hungary Hungary 6.6 +4.62% 48
Indonesia Indonesia 5.15 +1.92% 105
Isle of Man Isle of Man 7.92 -0.637% 12
India India 4.29 +1.28% 124
Ireland Ireland 6.03 +0.815% 72
Iran Iran 4.71 +3.42% 113
Iraq Iraq 2.79 +2.94% 172
Iceland Iceland 5.51 -1.44% 87
Israel Israel 4.24 +0.918% 127
Italy Italy 8.18 +0.398% 8
Jamaica Jamaica 5.08 +0.339% 107
Jordan Jordan 3.97 +3.57% 135
Japan Japan 7 +2.86% 33
Kazakhstan Kazakhstan 4.56 -1.62% 117
Kenya Kenya 2.5 +1.78% 182
Kyrgyzstan Kyrgyzstan 3.96 -1.05% 136
Cambodia Cambodia 3.85 +0.886% 140
Kiribati Kiribati 3.53 -1.18% 150
St. Kitts & Nevis St. Kitts & Nevis 6.4 -1.88% 58
South Korea South Korea 8.15 +2.07% 9
Kuwait Kuwait 5.16 +4.37% 104
Laos Laos 3.37 +1.14% 154
Lebanon Lebanon 5.25 +0.898% 100
Liberia Liberia 2.43 +0.42% 188
Libya Libya 4.35 +5.39% 121
St. Lucia St. Lucia 6.23 +0.703% 69
Liechtenstein Liechtenstein 7.89 -0.243% 14
Sri Lanka Sri Lanka 5.39 +0.618% 93
Lesotho Lesotho 2.07 -0.0858% 200
Lithuania Lithuania 6.85 -1.12% 40
Luxembourg Luxembourg 7.2 +0.181% 28
Latvia Latvia 6.65 -0.414% 44
Macao SAR China Macao SAR China 5.44 -5.06% 91
Saint Martin (French part) Saint Martin (French part) 7.55 +2.03% 18
Morocco Morocco 4.64 +0.572% 114
Monaco Monaco 6.58 -2.74% 49
Moldova Moldova 5.56 -2.47% 84
Madagascar Madagascar 2.43 +1.41% 187
Maldives Maldives 3.19 +6.15% 160
Mexico Mexico 4.56 +1.57% 118
Marshall Islands Marshall Islands 4.05 +3.93% 131
North Macedonia North Macedonia 6.8 -0.991% 41
Mali Mali 1.75 +1.78% 210
Malta Malta 5.37 -0.835% 94
Myanmar (Burma) Myanmar (Burma) 4.86 +1.46% 111
Montenegro Montenegro 6.25 -1.46% 68
Mongolia Mongolia 4.07 +0.657% 129
Northern Mariana Islands Northern Mariana Islands 8.66 +2.53% 2
Mozambique Mozambique 1.73 +5.72% 211
Mauritania Mauritania 2.26 +0.347% 194
Mauritius Mauritius 6.54 -1.91% 51
Malawi Malawi 1.63 +1.71% 214
Malaysia Malaysia 4.26 +0.61% 126
Namibia Namibia 2.54 +1.5% 180
New Caledonia New Caledonia 5.93 +1.06% 76
Niger Niger 1.98 -0.38% 204
Nigeria Nigeria 2.3 +1.14% 193
Nicaragua Nicaragua 3.45 +3.21% 152
Netherlands Netherlands 7.14 -0.782% 30
Norway Norway 6.67 +1.04% 43
Nepal Nepal 3.53 +1.61% 149
Nauru Nauru 2.98 -1.92% 165
New Zealand New Zealand 6 -0.671% 74
Oman Oman 2.5 +0.85% 183
Pakistan Pakistan 2.84 +0.0275% 170
Panama Panama 4.93 +1.4% 109
Peru Peru 4.58 +2.28% 116
Philippines Philippines 3.89 +1.47% 139
Palau Palau 7.34 +1.34% 24
Papua New Guinea Papua New Guinea 3.29 +0.534% 155
Poland Poland 5.79 -0.0966% 79
Puerto Rico Puerto Rico 6.86 -1.2% 39
North Korea North Korea 7.52 +3.64% 20
Portugal Portugal 7.06 -0.161% 32
Paraguay Paraguay 3.97 +0.228% 134
Palestinian Territories Palestinian Territories 2.54 +0.251% 179
French Polynesia French Polynesia 6.61 +1.85% 47
Qatar Qatar 3.22 +5.08% 157
Romania Romania 7.38 +12% 23
Russia Russia 5.68 -2.6% 83
Rwanda Rwanda 2.18 +0.64% 195
Saudi Arabia Saudi Arabia 3.62 +2.8% 145
Sudan Sudan 2.33 -0.327% 192
Senegal Senegal 2.5 +0.378% 184
Singapore Singapore 5.51 -1.59% 88
Solomon Islands Solomon Islands 2.85 +2.72% 169
Sierra Leone Sierra Leone 2.5 +1.2% 185
El Salvador El Salvador 3.66 +1.85% 144
San Marino San Marino 9.1 +0.166% 1
Somalia Somalia 1.83 +0.0738% 209
Serbia Serbia 6.64 -0.0678% 45
South Sudan South Sudan 2.6 +3.03% 176
São Tomé & Príncipe São Tomé & Príncipe 2.73 +1.56% 173
Suriname Suriname 5.17 -0.0227% 103
Slovakia Slovakia 6.28 -1.35% 66
Slovenia Slovenia 7.22 -0.492% 26
Sweden Sweden 6.45 -0.802% 53
Eswatini Eswatini 2.48 +4.08% 186
Sint Maarten Sint Maarten 8.65 -2.42% 3
Seychelles Seychelles 5.05 +0.263% 108
Syria Syria 3.24 +0.765% 156
Turks & Caicos Islands Turks & Caicos Islands 6.87 +4.96% 38
Chad Chad 1.87 +1.11% 207
Togo Togo 2.63 +1.54% 175
Thailand Thailand 7.1 +0.798% 31
Tajikistan Tajikistan 3.21 -0.605% 159
Turkmenistan Turkmenistan 3.91 +2.71% 138
Timor-Leste Timor-Leste 3.02 +3.93% 163
Tonga Tonga 4.34 +4.26% 123
Trinidad & Tobago Trinidad & Tobago 5.82 -3.24% 77
Tunisia Tunisia 5.34 -0.985% 96
Turkey Turkey 5.42 -0.801% 92
Tuvalu Tuvalu 5.21 +6.51% 101
Tanzania Tanzania 1.94 +3.92% 205
Uganda Uganda 1.71 +2.48% 212
Ukraine Ukraine 6.71 -3.76% 42
Uruguay Uruguay 5.73 -0.337% 80
United States United States 6.05 -1.92% 71
Uzbekistan Uzbekistan 4.01 -1.73% 132
St. Vincent & Grenadines St. Vincent & Grenadines 6.44 -1.47% 56
Venezuela Venezuela 5.08 +0.811% 106
British Virgin Islands British Virgin Islands 6.44 +1.5% 55
U.S. Virgin Islands U.S. Virgin Islands 7.73 -0.962% 16
Vietnam Vietnam 5.3 +0.123% 98
Vanuatu Vanuatu 3.03 +0.845% 162
Samoa Samoa 4.07 +1.8% 130
Kosovo Kosovo 5.18 +2.08% 102
Yemen Yemen 2.04 +2.38% 202
South Africa South Africa 3.62 -0.199% 146
Zambia Zambia 1.89 +3.45% 206
Zimbabwe Zimbabwe 1.57 -0.407% 215

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.5559.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.5559.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))