Population ages 55-59, female (% of female population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 8.03 -1.18% 10
Afghanistan Afghanistan 2.12 +1.15% 205
Angola Angola 2.45 +0.413% 196
Albania Albania 6.66 -0.532% 45
Andorra Andorra 8.18 +0.839% 6
United Arab Emirates United Arab Emirates 3.48 -1.51% 155
Argentina Argentina 4.83 +0.626% 115
Armenia Armenia 6.01 -4.98% 83
American Samoa American Samoa 5.78 +2% 89
Antigua & Barbuda Antigua & Barbuda 7.29 +0.696% 25
Australia Australia 5.85 -0.548% 87
Austria Austria 7.74 -0.229% 15
Azerbaijan Azerbaijan 6.25 -0.943% 67
Burundi Burundi 1.82 +2.29% 215
Belgium Belgium 6.62 -1.29% 47
Benin Benin 2.52 +0.681% 191
Burkina Faso Burkina Faso 2.33 +0.983% 199
Bangladesh Bangladesh 3.58 +2.41% 154
Bulgaria Bulgaria 6.61 +2.16% 49
Bahrain Bahrain 4.15 -0.622% 136
Bahamas Bahamas 6.6 +1.28% 51
Bosnia & Herzegovina Bosnia & Herzegovina 7.15 -3.87% 30
Belarus Belarus 6.75 -2.27% 43
Belize Belize 3.86 +2.47% 144
Bermuda Bermuda 7.23 -3.31% 27
Bolivia Bolivia 3.67 +1.48% 151
Brazil Brazil 5.75 +0.0135% 91
Barbados Barbados 6.92 -2.31% 37
Brunei Brunei 5.31 +3.78% 106
Bhutan Bhutan 3.99 +3.23% 143
Botswana Botswana 3.04 +3.23% 164
Central African Republic Central African Republic 2.16 -2.05% 204
Canada Canada 6.33 -3.61% 65
Switzerland Switzerland 7.4 -0.538% 23
Chile Chile 6.13 +0.628% 73
China China 8.28 +0.714% 5
Côte d’Ivoire Côte d’Ivoire 2.17 +0.642% 203
Cameroon Cameroon 2.27 +2.1% 201
Congo - Kinshasa Congo - Kinshasa 2.28 -0.308% 200
Congo - Brazzaville Congo - Brazzaville 2.9 +1.88% 170
Colombia Colombia 5.61 -0.122% 99
Comoros Comoros 2.86 +1.23% 175
Cape Verde Cape Verde 4.42 -0.439% 128
Costa Rica Costa Rica 5.89 -0.501% 86
Cuba Cuba 9 -0.661% 3
Curaçao Curaçao 7.39 -2.27% 24
Cayman Islands Cayman Islands 7.22 +2.62% 29
Cyprus Cyprus 6.17 +1.15% 72
Czechia Czechia 6.1 -0.681% 76
Germany Germany 7.98 -1.4% 12
Djibouti Djibouti 3.83 +3.08% 145
Dominica Dominica 6.89 +1.96% 38
Denmark Denmark 6.88 -1.67% 40
Dominican Republic Dominican Republic 4.67 +0.318% 120
Algeria Algeria 4.45 +2.59% 127
Ecuador Ecuador 4.5 +1.86% 125
Egypt Egypt 3.82 +0.386% 146
Eritrea Eritrea 3 +0.932% 165
Spain Spain 7.65 +0.326% 17
Estonia Estonia 6.09 +0.418% 77
Ethiopia Ethiopia 2.63 +0.814% 186
Finland Finland 6.35 -1.86% 64
Fiji Fiji 4.68 -1.17% 119
France France 6.39 -0.863% 60
Faroe Islands Faroe Islands 6.19 -0.319% 70
Micronesia (Federated States of) Micronesia (Federated States of) 4.11 +0.764% 139
Gabon Gabon 2.88 +1.56% 173
United Kingdom United Kingdom 6.76 +0.781% 42
Georgia Georgia 6.18 -3.06% 71
Ghana Ghana 3.19 +1.4% 160
Gibraltar Gibraltar 6.41 -0.758% 59
Guinea Guinea 2.52 +0.123% 192
Gambia Gambia 2.81 -0.437% 178
Guinea-Bissau Guinea-Bissau 2.46 +1.49% 194
Equatorial Guinea Equatorial Guinea 2.94 -1.28% 168
Greece Greece 7.6 +3.08% 19
Grenada Grenada 5.19 -2.76% 107
Greenland Greenland 7.98 -3.29% 11
Guatemala Guatemala 3.05 +0.929% 163
Guam Guam 5.89 -0.865% 85
Guyana Guyana 4.7 +1.07% 118
Hong Kong SAR China Hong Kong SAR China 7.95 -1.16% 13
Honduras Honduras 3.22 +2.11% 159
Croatia Croatia 7.1 -0.895% 31
Haiti Haiti 3.42 +1.34% 157
Hungary Hungary 6.43 +4.05% 57
Indonesia Indonesia 5.37 +1.79% 105
Isle of Man Isle of Man 7.75 -0.21% 14
India India 4.49 +1.32% 126
Ireland Ireland 6.03 +0.257% 80
Iran Iran 4.84 +3.11% 114
Iraq Iraq 3.17 +1.77% 161
Iceland Iceland 5.72 -2.99% 93
Israel Israel 4.36 +0.866% 130
Italy Italy 8.11 +0.391% 9
Jamaica Jamaica 5.74 -0.298% 92
Jordan Jordan 3.72 +3.11% 148
Japan Japan 6.5 +2.93% 54
Kazakhstan Kazakhstan 5.08 -1.15% 111
Kenya Kenya 2.57 +1.59% 187
Kyrgyzstan Kyrgyzstan 4.37 -1.19% 129
Cambodia Cambodia 4.24 +0.291% 132
Kiribati Kiribati 4.01 -0.641% 142
St. Kitts & Nevis St. Kitts & Nevis 6.12 -1.7% 75
South Korea South Korea 8.15 +2.58% 7
Kuwait Kuwait 4.22 +3.9% 134
Laos Laos 3.63 +0.906% 152
Lebanon Lebanon 5.64 +1.86% 98
Liberia Liberia 2.71 +0.425% 182
Libya Libya 4.6 +5.53% 121
St. Lucia St. Lucia 6.44 +1.02% 56
Liechtenstein Liechtenstein 8.14 -1.22% 8
Sri Lanka Sri Lanka 5.65 +0.22% 97
Lesotho Lesotho 2.46 -2.22% 195
Lithuania Lithuania 6.96 -1.41% 36
Luxembourg Luxembourg 6.72 +0.38% 44
Latvia Latvia 6.65 -0.919% 46
Macao SAR China Macao SAR China 7.09 -2.21% 33
Saint Martin (French part) Saint Martin (French part) 7.7 +2.25% 16
Morocco Morocco 4.88 +0.23% 113
Monaco Monaco 6.57 -1.52% 52
Moldova Moldova 6.08 -2.82% 78
Madagascar Madagascar 2.55 +1.36% 189
Maldives Maldives 4.14 +3.07% 137
Mexico Mexico 5.04 +1.81% 112
Marshall Islands Marshall Islands 4.03 +3.56% 141
North Macedonia North Macedonia 6.88 -0.739% 39
Mali Mali 1.81 +1.51% 216
Malta Malta 5.4 -1.32% 104
Myanmar (Burma) Myanmar (Burma) 5.19 +1.23% 108
Montenegro Montenegro 6.37 -1.47% 62
Mongolia Mongolia 4.77 +0.407% 117
Northern Mariana Islands Northern Mariana Islands 8.94 +5.35% 4
Mozambique Mozambique 1.97 +1.18% 212
Mauritania Mauritania 2.48 +1.04% 193
Mauritius Mauritius 6.61 -2.32% 50
Malawi Malawi 2.08 +0.265% 207
Malaysia Malaysia 4.58 +0.507% 123
Namibia Namibia 2.85 +0.0173% 176
New Caledonia New Caledonia 6.02 +2.58% 81
Niger Niger 2.02 -0.355% 211
Nigeria Nigeria 2.39 +0.745% 197
Nicaragua Nicaragua 3.77 +2.37% 147
Netherlands Netherlands 7.03 -0.806% 35
Norway Norway 6.5 +1.05% 55
Nepal Nepal 3.7 +2.46% 149
Nauru Nauru 2.89 -4.3% 171
New Zealand New Zealand 6.25 -0.745% 66
Oman Oman 2.35 +0.167% 198
Pakistan Pakistan 2.98 +0.0248% 167
Panama Panama 5.12 +1.19% 110
Peru Peru 4.52 +1.92% 124
Philippines Philippines 4.12 +1.45% 138
Palau Palau 7.41 -0.402% 22
Papua New Guinea Papua New Guinea 3.31 +2.62% 158
Poland Poland 5.66 -0.271% 96
Puerto Rico Puerto Rico 7.08 -1.78% 34
North Korea North Korea 7.59 +3.54% 20
Portugal Portugal 7.24 -0.537% 26
Paraguay Paraguay 4.2 -0.22% 135
Palestinian Territories Palestinian Territories 2.72 +1.26% 181
French Polynesia French Polynesia 6.42 +1.43% 58
Qatar Qatar 2.76 +2.48% 179
Romania Romania 7.22 +11.8% 28
Russia Russia 5.95 -3.48% 84
Rwanda Rwanda 2.53 +0.563% 190
Saudi Arabia Saudi Arabia 2.93 +2.38% 169
Sudan Sudan 2.64 +0.947% 184
Senegal Senegal 2.55 +1.57% 188
Singapore Singapore 5.71 -1.01% 95
Solomon Islands Solomon Islands 2.88 +2.93% 174
Sierra Leone Sierra Leone 2.68 +0.988% 183
El Salvador El Salvador 4.8 +1.81% 116
San Marino San Marino 9.22 +1.01% 2
Somalia Somalia 2.05 -0.132% 209
Serbia Serbia 6.61 -0.466% 48
South Sudan South Sudan 2.99 +3.13% 166
São Tomé & Príncipe São Tomé & Príncipe 2.63 +0.075% 185
Suriname Suriname 5.14 -0.643% 109
Slovakia Slovakia 6.21 -1.64% 69
Slovenia Slovenia 7.1 -1.11% 32
Sweden Sweden 6.38 -0.671% 61
Eswatini Eswatini 3.17 +2.4% 162
Sint Maarten Sint Maarten 9.26 -1.12% 1
Seychelles Seychelles 6.21 -0.646% 68
Syria Syria 3.6 +0.452% 153
Turks & Caicos Islands Turks & Caicos Islands 6.52 +0.523% 53
Chad Chad 2.03 +0.593% 210
Togo Togo 2.76 +1.37% 180
Thailand Thailand 7.56 +0.907% 21
Tajikistan Tajikistan 3.46 -0.365% 156
Turkmenistan Turkmenistan 4.59 +2.26% 122
Timor-Leste Timor-Leste 2.85 +3.48% 177
Tonga Tonga 4.1 +7.09% 140
Trinidad & Tobago Trinidad & Tobago 6.05 -2.78% 79
Tunisia Tunisia 5.61 -0.852% 100
Turkey Turkey 5.46 -1.27% 102
Tuvalu Tuvalu 5.77 -0.592% 90
Tanzania Tanzania 2.07 +1.86% 208
Uganda Uganda 1.91 +1.77% 214
Ukraine Ukraine 6.83 -2.61% 41
Uruguay Uruguay 5.71 -0.751% 94
United States United States 6.01 -2.13% 82
Uzbekistan Uzbekistan 4.27 -1.92% 131
St. Vincent & Grenadines St. Vincent & Grenadines 6.13 -1.99% 74
Venezuela Venezuela 5.42 +0.836% 103
British Virgin Islands British Virgin Islands 6.36 +3.13% 63
U.S. Virgin Islands U.S. Virgin Islands 7.61 -2.03% 18
Vietnam Vietnam 5.6 -0.15% 101
Vanuatu Vanuatu 2.89 -0.745% 172
Samoa Samoa 3.7 +0.227% 150
Kosovo Kosovo 5.79 +3.38% 88
Yemen Yemen 2.18 +1.96% 202
South Africa South Africa 4.23 -0.739% 133
Zambia Zambia 2.1 +2.61% 206
Zimbabwe Zimbabwe 1.92 +3.6% 213

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.5559.FE.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.5559.FE.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))