Population ages 50-54, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 6.87 -2.17% 43
Afghanistan Afghanistan 2.55 +1.76% 206
Angola Angola 2.71 +0.00961% 200
Albania Albania 5.49 -3.02% 112
Andorra Andorra 8.89 +0.149% 1
United Arab Emirates United Arab Emirates 5.26 +3.54% 118
Argentina Argentina 5.55 +2.77% 109
Armenia Armenia 5.26 -1.04% 119
American Samoa American Samoa 6.41 -0.896% 68
Antigua & Barbuda Antigua & Barbuda 6.71 -1.69% 56
Australia Australia 6.3 -0.383% 73
Austria Austria 7.07 -3.84% 36
Azerbaijan Azerbaijan 5.52 -2.2% 110
Burundi Burundi 2.38 +2.38% 212
Belgium Belgium 6.79 -1.18% 48
Benin Benin 2.92 +0.597% 192
Burkina Faso Burkina Faso 2.62 +2.09% 202
Bangladesh Bangladesh 4.41 +0.95% 150
Bulgaria Bulgaria 7.91 +1.06% 17
Bahrain Bahrain 5.88 +2.89% 92
Bahamas Bahamas 6.76 -1.02% 51
Bosnia & Herzegovina Bosnia & Herzegovina 6.97 +2.23% 40
Belarus Belarus 6.75 +0.959% 54
Belize Belize 4.58 +1.6% 140
Bermuda Bermuda 8.24 -0.0214% 12
Bolivia Bolivia 4.37 +1.27% 151
Brazil Brazil 6.1 +1.45% 84
Barbados Barbados 6.88 +0.0159% 42
Brunei Brunei 6.32 +2.52% 70
Bhutan Bhutan 4.84 +2.14% 134
Botswana Botswana 3.51 +0.867% 173
Central African Republic Central African Republic 1.72 -4.5% 216
Canada Canada 6.1 -1.46% 85
Switzerland Switzerland 7.08 -2.19% 35
Chile Chile 6.48 +0.202% 66
China China 8.35 -1.96% 8
Côte d’Ivoire Côte d’Ivoire 3.27 +2.73% 181
Cameroon Cameroon 2.92 +1.58% 191
Congo - Kinshasa Congo - Kinshasa 2.59 -1.08% 204
Congo - Brazzaville Congo - Brazzaville 3.53 +1.13% 172
Colombia Colombia 5.61 -0.233% 107
Comoros Comoros 3.78 +1.19% 165
Cape Verde Cape Verde 4.45 +0.25% 146
Costa Rica Costa Rica 5.67 +0.235% 105
Cuba Cuba 8.56 -1.62% 4
Curaçao Curaçao 6.2 -0.645% 79
Cayman Islands Cayman Islands 8.52 +0.69% 6
Cyprus Cyprus 6.17 -0.014% 80
Czechia Czechia 7.72 +6.77% 19
Germany Germany 6.65 -5.79% 59
Djibouti Djibouti 4.67 +2.33% 136
Dominica Dominica 7 -2.85% 37
Denmark Denmark 6.61 -0.307% 60
Dominican Republic Dominican Republic 5.03 +1.34% 126
Algeria Algeria 5.34 +1.42% 114
Ecuador Ecuador 5.08 +1.67% 125
Egypt Egypt 4.5 +0.818% 142
Eritrea Eritrea 3.07 -0.244% 184
Spain Spain 8.29 +1.43% 9
Estonia Estonia 7.22 +1.23% 29
Ethiopia Ethiopia 2.84 +0.103% 194
Finland Finland 5.82 -1.8% 97
Fiji Fiji 4.9 -1.67% 131
France France 6.71 +0.408% 58
Faroe Islands Faroe Islands 6.27 +0.511% 76
Micronesia (Federated States of) Micronesia (Federated States of) 3.72 -1.4% 166
Gabon Gabon 3.9 +2.36% 163
United Kingdom United Kingdom 6.55 -1.2% 63
Georgia Georgia 5.91 +0.264% 91
Ghana Ghana 3.69 +0.9% 169
Gibraltar Gibraltar 6.3 +0.118% 74
Guinea Guinea 2.51 -0.515% 207
Gambia Gambia 2.85 -1.35% 193
Guinea-Bissau Guinea-Bissau 3.05 +3.83% 186
Equatorial Guinea Equatorial Guinea 4.14 +2.37% 154
Greece Greece 7.68 +0.268% 20
Grenada Grenada 5.33 +0.677% 115
Greenland Greenland 5.68 -9.83% 104
Guatemala Guatemala 3.28 +2.71% 180
Guam Guam 5.76 -2.4% 101
Guyana Guyana 4.88 -0.313% 132
Hong Kong SAR China Hong Kong SAR China 7.09 +0.0308% 34
Honduras Honduras 3.88 +3.23% 164
Croatia Croatia 7 +0.367% 38
Haiti Haiti 4.02 +1.93% 159
Hungary Hungary 7.82 +2.46% 18
Indonesia Indonesia 6.03 +0.826% 87
Isle of Man Isle of Man 7.68 -2.9% 21
India India 5.11 +1.64% 121
Ireland Ireland 6.85 +1.47% 45
Iran Iran 5.88 +1.6% 93
Iraq Iraq 3.7 +1.95% 167
Iceland Iceland 5.95 +1.19% 89
Israel Israel 5.11 +1.68% 122
Italy Italy 8.11 -0.316% 13
Jamaica Jamaica 5.83 +2.41% 96
Jordan Jordan 4.86 +1.02% 133
Japan Japan 8.24 +2.64% 11
Kazakhstan Kazakhstan 5.09 +0.378% 124
Kenya Kenya 3.29 +1.26% 178
Kyrgyzstan Kyrgyzstan 4.48 -0.806% 145
Cambodia Cambodia 4.13 -3.03% 156
Kiribati Kiribati 3.5 -2.61% 174
St. Kitts & Nevis St. Kitts & Nevis 6.58 +0.925% 62
South Korea South Korea 8.66 -0.983% 3
Kuwait Kuwait 7.53 +2.18% 23
Laos Laos 4.14 +1.73% 155
Lebanon Lebanon 5.25 -2.24% 120
Liberia Liberia 3.05 +1.18% 185
Libya Libya 6.11 +3.12% 82
St. Lucia St. Lucia 6.55 -0.317% 64
Liechtenstein Liechtenstein 7.51 -3.45% 24
Sri Lanka Sri Lanka 5.72 -0.741% 102
Lesotho Lesotho 2.61 +1.23% 203
Lithuania Lithuania 7.13 -1.37% 32
Luxembourg Luxembourg 7.11 -1.83% 33
Latvia Latvia 7.17 +0.556% 30
Macao SAR China Macao SAR China 7.16 +10.6% 31
Saint Martin (French part) Saint Martin (French part) 6.81 -0.844% 47
Morocco Morocco 5.36 +1.39% 113
Monaco Monaco 4.91 -3.68% 129
Moldova Moldova 5.94 +1.14% 90
Madagascar Madagascar 3.19 +1.58% 182
Maldives Maldives 4.51 +5.92% 141
Mexico Mexico 5.29 +0.763% 117
Marshall Islands Marshall Islands 4.81 +2.91% 135
North Macedonia North Macedonia 6.72 +0.0263% 55
Mali Mali 2.46 +2.51% 209
Malta Malta 6.22 +3.06% 78
Myanmar (Burma) Myanmar (Burma) 5.71 +0.909% 103
Montenegro Montenegro 6.26 +0.154% 77
Mongolia Mongolia 5.02 +1.6% 128
Northern Mariana Islands Northern Mariana Islands 8.51 -1.09% 7
Mozambique Mozambique 2.47 -0.407% 208
Mauritania Mauritania 2.81 -0.144% 196
Mauritius Mauritius 6.32 +0.132% 71
Malawi Malawi 2.4 +4.53% 211
Malaysia Malaysia 5.09 +2.12% 123
Namibia Namibia 3.48 +2.82% 175
New Caledonia New Caledonia 6.77 +0.22% 50
Niger Niger 2.45 +0.0331% 210
Nigeria Nigeria 3 +1.7% 190
Nicaragua Nicaragua 4.43 +2.34% 148
Netherlands Netherlands 6.76 -4.23% 52
Norway Norway 6.89 -1.42% 41
Nepal Nepal 4.42 +2.61% 149
Nauru Nauru 3.28 +0.44% 179
New Zealand New Zealand 6.28 -1.39% 75
Oman Oman 4.2 +1.84% 153
Pakistan Pakistan 3.37 +0.699% 177
Panama Panama 5.64 +0.517% 106
Peru Peru 5.5 +1.54% 111
Philippines Philippines 4.64 +0.55% 137
Palau Palau 8.28 +1.28% 10
Papua New Guinea Papua New Guinea 4.03 +1.03% 158
Poland Poland 6.78 +4.12% 49
Puerto Rico Puerto Rico 6.71 -1.32% 57
North Korea North Korea 8.05 -3.35% 16
Portugal Portugal 7.49 +1.27% 25
Paraguay Paraguay 4.44 +0.00347% 147
Palestinian Territories Palestinian Territories 3.04 +0.804% 187
French Polynesia French Polynesia 6.84 -0.742% 46
Qatar Qatar 5.77 +4.52% 99
Romania Romania 8.08 -3.97% 14
Russia Russia 6.6 +2.05% 61
Rwanda Rwanda 2.66 -0.874% 201
Saudi Arabia Saudi Arabia 5.02 +2.04% 127
Sudan Sudan 2.78 -0.958% 198
Senegal Senegal 3.02 +1.3% 188
Singapore Singapore 6 +1.96% 88
Solomon Islands Solomon Islands 3.95 +2.64% 161
Sierra Leone Sierra Leone 3.18 +1.37% 183
El Salvador El Salvador 4.22 +0.174% 152
San Marino San Marino 8.78 -1.44% 2
Somalia Somalia 2.36 +0.357% 213
Serbia Serbia 6.97 +1.05% 39
South Sudan South Sudan 3.69 +2.94% 168
São Tomé & Príncipe São Tomé & Príncipe 3.57 +1.21% 171
Suriname Suriname 5.79 +0.0424% 98
Slovakia Slovakia 7.27 +4.79% 28
Slovenia Slovenia 7.27 +1.07% 27
Sweden Sweden 6.32 +0.286% 69
Eswatini Eswatini 3.01 +0.416% 189
Sint Maarten Sint Maarten 8.06 -2.42% 15
Seychelles Seychelles 6.41 +2.18% 67
Syria Syria 3.98 +0.227% 160
Turks & Caicos Islands Turks & Caicos Islands 8.53 +1.23% 5
Chad Chad 2.55 +1.34% 205
Togo Togo 3.43 +1.67% 176
Thailand Thailand 7.39 -0.981% 26
Tajikistan Tajikistan 3.67 -0.705% 170
Turkmenistan Turkmenistan 4.9 +0.0293% 130
Timor-Leste Timor-Leste 3.93 +1.3% 162
Tonga Tonga 4.5 -4.11% 143
Trinidad & Tobago Trinidad & Tobago 6.32 +1.97% 72
Tunisia Tunisia 5.87 +1.1% 95
Turkey Turkey 5.88 +2.58% 94
Tuvalu Tuvalu 5.31 -5.97% 116
Tanzania Tanzania 2.82 +2.04% 195
Uganda Uganda 2.31 +0.641% 214
Ukraine Ukraine 6.76 -1.73% 53
Uruguay Uruguay 6.14 +1.85% 81
United States United States 6.11 -1.46% 83
Uzbekistan Uzbekistan 4.63 +0.609% 138
St. Vincent & Grenadines St. Vincent & Grenadines 6.52 +0.0412% 65
Venezuela Venezuela 5.55 +0.246% 108
British Virgin Islands British Virgin Islands 7.54 +0.219% 22
U.S. Virgin Islands U.S. Virgin Islands 6.87 -2.85% 44
Vietnam Vietnam 6.04 +0.0478% 86
Vanuatu Vanuatu 4.06 +3.05% 157
Samoa Samoa 4.59 -1.49% 139
Kosovo Kosovo 5.77 +1.88% 100
Yemen Yemen 2.77 +1.85% 199
South Africa South Africa 4.49 +1.37% 144
Zambia Zambia 2.79 +3.87% 197
Zimbabwe Zimbabwe 2.1 +3.32% 215

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.5054.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.5054.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))