Population ages 35-39, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 6.36 +0.749% 143
Afghanistan Afghanistan 5.05 +2.13% 204
Angola Angola 5.36 +0.16% 197
Albania Albania 7.45 +4.67% 76
Andorra Andorra 7 -0.994% 113
United Arab Emirates United Arab Emirates 14.7 +4.43% 3
Argentina Argentina 7.3 +0.576% 82
Armenia Armenia 8.52 +2.33% 31
American Samoa American Samoa 5.99 -1.58% 162
Antigua & Barbuda Antigua & Barbuda 7.59 +0.28% 63
Australia Australia 7.29 -0.163% 86
Austria Austria 7.08 +0.442% 104
Azerbaijan Azerbaijan 8.78 +1.9% 24
Burundi Burundi 5.83 -1.07% 174
Belgium Belgium 6.54 +0.457% 136
Benin Benin 5.59 +0.578% 188
Burkina Faso Burkina Faso 5.58 +0.264% 190
Bangladesh Bangladesh 6.96 -2.92% 115
Bulgaria Bulgaria 7.56 +0.428% 66
Bahrain Bahrain 15.2 +0.312% 2
Bahamas Bahamas 7.44 +1.59% 78
Bosnia & Herzegovina Bosnia & Herzegovina 6.82 -3.44% 122
Belarus Belarus 9.1 +0.136% 20
Belize Belize 7.74 +2.12% 55
Bermuda Bermuda 6.16 -4.49% 157
Bolivia Bolivia 7.15 +1.46% 98
Brazil Brazil 7.95 -1.15% 46
Barbados Barbados 6.6 -1.55% 132
Brunei Brunei 9.43 +0.534% 17
Bhutan Bhutan 9.76 +3.63% 12
Botswana Botswana 7.2 +2.79% 91
Central African Republic Central African Republic 3.2 +2.28% 216
Canada Canada 7.15 +0.52% 99
Switzerland Switzerland 7.29 -0.143% 83
Chile Chile 8.06 +1.8% 41
China China 8.44 +4.38% 33
Côte d’Ivoire Côte d’Ivoire 6.18 -1.37% 156
Cameroon Cameroon 5.86 +0.704% 170
Congo - Kinshasa Congo - Kinshasa 4.88 +0.659% 208
Congo - Brazzaville Congo - Brazzaville 5.81 -1.02% 175
Colombia Colombia 7.72 +0.751% 56
Comoros Comoros 6.19 -0.218% 155
Cape Verde Cape Verde 8.54 +2.53% 29
Costa Rica Costa Rica 8.23 +0.461% 37
Cuba Cuba 7.29 +3.2% 84
Curaçao Curaçao 7.19 +3.08% 93
Cayman Islands Cayman Islands 9.58 -1.51% 13
Cyprus Cyprus 10.3 +0.709% 9
Czechia Czechia 7.08 -0.636% 105
Germany Germany 6.89 +1.76% 118
Djibouti Djibouti 6.88 +0.596% 121
Dominica Dominica 7.7 +0.673% 58
Denmark Denmark 6.21 +2.88% 153
Dominican Republic Dominican Republic 7.04 +0.793% 108
Algeria Algeria 7.97 -1.64% 44
Ecuador Ecuador 7.49 +0.413% 73
Egypt Egypt 7.22 +0.413% 90
Eritrea Eritrea 4.89 +2.64% 207
Spain Spain 6.31 -2.2% 148
Estonia Estonia 8.49 +1.61% 32
Ethiopia Ethiopia 5.56 +2.75% 191
Finland Finland 6.76 -0.413% 124
Fiji Fiji 7.47 -0.953% 75
France France 6.05 +0.119% 161
Faroe Islands Faroe Islands 6.56 +3.29% 135
Micronesia (Federated States of) Micronesia (Federated States of) 5.75 +1.5% 179
Gabon Gabon 7.34 -0.551% 79
United Kingdom United Kingdom 6.63 -0.66% 129
Georgia Georgia 7.82 +0.604% 51
Ghana Ghana 6.59 -0.25% 133
Gibraltar Gibraltar 6.63 -1.17% 128
Guinea Guinea 5.43 +3.19% 195
Gambia Gambia 5.62 +2.15% 186
Guinea-Bissau Guinea-Bissau 6.08 +0.335% 159
Equatorial Guinea Equatorial Guinea 7.91 -0.15% 50
Greece Greece 5.8 -3.27% 177
Grenada Grenada 9.19 +2.36% 18
Greenland Greenland 7.58 +1.71% 64
Guatemala Guatemala 6.96 +2.23% 116
Guam Guam 5.92 +0.8% 168
Guyana Guyana 5.63 +1.16% 184
Hong Kong SAR China Hong Kong SAR China 6.78 +0.718% 123
Honduras Honduras 7.19 +0.718% 92
Croatia Croatia 6.57 -2.41% 134
Haiti Haiti 7.13 +1.6% 100
Hungary Hungary 6.91 +0.924% 117
Indonesia Indonesia 7.44 -1.19% 77
Isle of Man Isle of Man 5.74 +0.0617% 181
India India 7.75 +0.659% 54
Ireland Ireland 6.45 -3.03% 139
Iran Iran 9.97 -1.27% 11
Iraq Iraq 6.07 +1.1% 160
Iceland Iceland 7.69 +2.75% 59
Israel Israel 6.24 -0.993% 151
Italy Italy 5.83 -0.0803% 173
Jamaica Jamaica 8.53 +0.284% 30
Jordan Jordan 7.29 +1.09% 85
Japan Japan 5.64 -2% 183
Kazakhstan Kazakhstan 7.92 +0.834% 49
Kenya Kenya 6.45 +0.633% 140
Kyrgyzstan Kyrgyzstan 7.23 +2.33% 89
Cambodia Cambodia 7.72 -0.0794% 57
Kiribati Kiribati 6.63 -0.0257% 127
St. Kitts & Nevis St. Kitts & Nevis 8.31 +1.46% 36
South Korea South Korea 6.71 -1.48% 126
Kuwait Kuwait 13.5 -2.67% 6
Laos Laos 7.53 +1.45% 69
Lebanon Lebanon 5.81 -2.69% 176
Liberia Liberia 5.62 -0.533% 187
Libya Libya 7.27 -1.62% 87
St. Lucia St. Lucia 8.08 +0.958% 40
Liechtenstein Liechtenstein 6.41 +2.3% 142
Sri Lanka Sri Lanka 6.63 -1.4% 131
Lesotho Lesotho 7.93 +2.34% 48
Lithuania Lithuania 8.05 +1.57% 42
Luxembourg Luxembourg 7.94 +0.676% 47
Latvia Latvia 8.21 +0.543% 38
Macao SAR China Macao SAR China 10.2 +3.21% 10
Saint Martin (French part) Saint Martin (French part) 5.03 -5.06% 206
Morocco Morocco 7.49 -0.0295% 71
Monaco Monaco 4.71 +2.57% 212
Moldova Moldova 8.95 +0.673% 22
Madagascar Madagascar 5.51 +0.596% 193
Maldives Maldives 14 +3.19% 5
Mexico Mexico 7.16 +1.23% 96
Marshall Islands Marshall Islands 5.95 -5.23% 165
North Macedonia North Macedonia 6.99 -0.543% 114
Mali Mali 5.05 -0.663% 205
Malta Malta 9.48 +1.83% 14
Myanmar (Burma) Myanmar (Burma) 7.66 -1.43% 62
Montenegro Montenegro 6.89 -2.94% 119
Mongolia Mongolia 8.37 +1.66% 34
Northern Mariana Islands Northern Mariana Islands 5.67 -2.54% 182
Mozambique Mozambique 5.06 +1.47% 203
Mauritania Mauritania 5.11 +0.64% 201
Mauritius Mauritius 7.75 +2.62% 53
Malawi Malawi 5.52 +0.188% 192
Malaysia Malaysia 8.94 +0.455% 23
Namibia Namibia 6.5 +1.63% 138
New Caledonia New Caledonia 7.34 -0.343% 80
Niger Niger 4.58 +0.0478% 213
Nigeria Nigeria 5.45 -0.467% 194
Nicaragua Nicaragua 7.32 +1.54% 81
Netherlands Netherlands 6.53 +1.55% 137
Norway Norway 7 +1.38% 110
Nepal Nepal 5.94 -0.644% 167
Nauru Nauru 7.55 +0.306% 67
New Zealand New Zealand 7 +2.01% 111
Oman Oman 14.1 +1.54% 4
Pakistan Pakistan 6.1 +0.778% 158
Panama Panama 7.15 -0.221% 97
Peru Peru 7.48 +0.652% 74
Philippines Philippines 7.17 +1.92% 94
Palau Palau 8.14 -0.893% 39
Papua New Guinea Papua New Guinea 6.72 +1.46% 125
Poland Poland 8.36 -2.63% 35
Puerto Rico Puerto Rico 5.75 +0.89% 180
North Korea North Korea 7.11 +0.73% 102
Portugal Portugal 5.84 -2.55% 172
Paraguay Paraguay 7.68 +1.14% 60
Palestinian Territories Palestinian Territories 6.3 +2.53% 149
French Polynesia French Polynesia 7.68 -0.478% 61
Qatar Qatar 17.4 +1.65% 1
Romania Romania 7.53 +3.61% 68
Russia Russia 9.46 -0.0929% 15
Rwanda Rwanda 6.44 -0.543% 141
Saudi Arabia Saudi Arabia 12.5 +0.353% 7
Sudan Sudan 5.22 +1.75% 199
Senegal Senegal 5.62 +0.698% 185
Singapore Singapore 8.55 +4.35% 28
Solomon Islands Solomon Islands 6.23 -0.5% 152
Sierra Leone Sierra Leone 5.94 +0.943% 166
El Salvador El Salvador 6.35 +4.94% 145
San Marino San Marino 5.15 -3.54% 200
Somalia Somalia 4.77 -0.444% 210
Serbia Serbia 6.89 -1.77% 120
South Sudan South Sudan 4.39 -5.17% 214
São Tomé & Príncipe São Tomé & Príncipe 5.59 -3.51% 189
Suriname Suriname 7 -2.43% 112
Slovakia Slovakia 7.96 -1.86% 45
Slovenia Slovenia 7.13 -1.5% 101
Sweden Sweden 7.01 +2.52% 109
Eswatini Eswatini 7.24 +0.353% 88
Sint Maarten Sint Maarten 6.63 -1.59% 130
Seychelles Seychelles 10.5 +0.671% 8
Syria Syria 5.96 +0.87% 164
Turks & Caicos Islands Turks & Caicos Islands 9.15 -2.55% 19
Chad Chad 4.8 +1.98% 209
Togo Togo 5.91 +0.102% 169
Thailand Thailand 7.16 -0.827% 95
Tajikistan Tajikistan 7.08 +2.47% 106
Turkmenistan Turkmenistan 7.79 +1.97% 52
Timor-Leste Timor-Leste 6.21 +1.38% 154
Tonga Tonga 4.25 -6.46% 215
Trinidad & Tobago Trinidad & Tobago 8.98 -2.03% 21
Tunisia Tunisia 7.57 -1.13% 65
Turkey Turkey 7.49 -0.474% 72
Tuvalu Tuvalu 5.85 +2.63% 171
Tanzania Tanzania 5.36 +0.592% 198
Uganda Uganda 5.1 +3.15% 202
Ukraine Ukraine 9.44 -0.546% 16
Uruguay Uruguay 7.06 +2.14% 107
United States United States 7.09 +0.474% 103
Uzbekistan Uzbekistan 8.05 +0.197% 43
St. Vincent & Grenadines St. Vincent & Grenadines 6.35 -2.43% 144
Venezuela Venezuela 6.34 -0.817% 146
British Virgin Islands British Virgin Islands 8.7 -3.53% 25
U.S. Virgin Islands U.S. Virgin Islands 5.42 -1.78% 196
Vietnam Vietnam 8.63 -0.367% 26
Vanuatu Vanuatu 6.3 +0.36% 150
Samoa Samoa 4.72 -2.7% 211
Kosovo Kosovo 7.5 +1.46% 70
Yemen Yemen 6.32 +0.924% 147
South Africa South Africa 8.62 +0.00314% 27
Zambia Zambia 5.99 +0.146% 163
Zimbabwe Zimbabwe 5.77 -6.87% 178

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.3539.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.3539.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))