Population ages 30-34, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 6.21 -1.21% 179
Afghanistan Afghanistan 6.63 +2.29% 160
Angola Angola 6.26 -0.786% 177
Albania Albania 8.52 +0.633% 37
Andorra Andorra 6.96 -0.41% 141
United Arab Emirates United Arab Emirates 16.8 +1.25% 2
Argentina Argentina 7.78 +0.638% 74
Armenia Armenia 8.53 -2.68% 36
American Samoa American Samoa 6.08 -4.46% 186
Antigua & Barbuda Antigua & Barbuda 7.79 -0.289% 73
Australia Australia 7.38 -0.375% 106
Austria Austria 7.16 -0.788% 115
Azerbaijan Azerbaijan 8.94 -2.55% 23
Burundi Burundi 6.23 -3.46% 178
Belgium Belgium 6.64 -0.931% 159
Benin Benin 6.66 +0.756% 158
Burkina Faso Burkina Faso 6.51 +0.187% 165
Bangladesh Bangladesh 7.13 +0.878% 120
Bulgaria Bulgaria 6.44 -5.17% 168
Bahrain Bahrain 13.1 -3.82% 5
Bahamas Bahamas 8.47 +1.38% 39
Bosnia & Herzegovina Bosnia & Herzegovina 5.76 -3.62% 197
Belarus Belarus 7.65 -5.48% 86
Belize Belize 8.94 +1.22% 24
Bermuda Bermuda 5.27 -2.07% 206
Bolivia Bolivia 8.14 +0.174% 53
Brazil Brazil 7.72 -1.1% 80
Barbados Barbados 6.88 -0.556% 145
Brunei Brunei 9.49 -1.31% 12
Bhutan Bhutan 10.9 -0.588% 8
Botswana Botswana 9.38 +3.01% 15
Central African Republic Central African Republic 4.74 +3.17% 213
Canada Canada 7.44 +0.614% 104
Switzerland Switzerland 7 -2.38% 137
Chile Chile 8.51 -0.265% 38
China China 7.74 -5.01% 78
Côte d’Ivoire Côte d’Ivoire 6.55 -2.04% 163
Cameroon Cameroon 6.86 -0.293% 146
Congo - Kinshasa Congo - Kinshasa 5.99 +0.356% 190
Congo - Brazzaville Congo - Brazzaville 6.33 -0.852% 173
Colombia Colombia 8.6 +1.2% 34
Comoros Comoros 6.34 -2.39% 172
Cape Verde Cape Verde 9.24 -0.481% 18
Costa Rica Costa Rica 8.21 -0.925% 50
Cuba Cuba 7.04 -4.01% 133
Curaçao Curaçao 9.4 +6% 14
Cayman Islands Cayman Islands 8.72 -3.54% 28
Cyprus Cyprus 9.13 -5.34% 19
Czechia Czechia 6.78 -2.34% 151
Germany Germany 6.58 -2.69% 161
Djibouti Djibouti 7.86 +0.444% 66
Dominica Dominica 8.55 +1.63% 35
Denmark Denmark 6.98 +1.38% 138
Dominican Republic Dominican Republic 7.9 +0.235% 63
Algeria Algeria 7.55 -3.11% 94
Ecuador Ecuador 8.19 +0.332% 51
Egypt Egypt 7.51 -1.5% 96
Eritrea Eritrea 6.13 +1.96% 185
Spain Spain 5.82 -1.68% 196
Estonia Estonia 7.22 -7.06% 111
Ethiopia Ethiopia 7.14 +1.35% 117
Finland Finland 6.88 -0.413% 143
Fiji Fiji 7.87 -0.381% 65
France France 5.84 -1.84% 194
Faroe Islands Faroe Islands 6.53 -2.83% 164
Micronesia (Federated States of) Micronesia (Federated States of) 7.77 +3.4% 75
Gabon Gabon 7.66 -2.5% 84
United Kingdom United Kingdom 7.02 +0.993% 135
Georgia Georgia 7.5 -2.93% 98
Ghana Ghana 7.28 -0.64% 108
Gibraltar Gibraltar 6.88 +1.18% 144
Guinea Guinea 7.11 +1.86% 124
Gambia Gambia 7.08 +1.39% 127
Guinea-Bissau Guinea-Bissau 7.08 +0.396% 128
Equatorial Guinea Equatorial Guinea 7.68 -4.27% 83
Greece Greece 5.49 -1.81% 203
Grenada Grenada 8.72 -3.37% 29
Greenland Greenland 8.13 -0.745% 55
Guatemala Guatemala 8.32 +1.09% 45
Guam Guam 6.82 +1.21% 147
Guyana Guyana 7.57 +4.38% 92
Hong Kong SAR China Hong Kong SAR China 6.74 -0.154% 155
Honduras Honduras 8.22 +0.794% 49
Croatia Croatia 5.85 -1.22% 193
Haiti Haiti 8.14 -0.0324% 54
Hungary Hungary 7.09 -0.11% 126
Indonesia Indonesia 7.58 -0.536% 91
Isle of Man Isle of Man 5.62 +0.0835% 201
India India 8.26 +0.0299% 47
Ireland Ireland 6 -1.32% 188
Iran Iran 8.68 -5.22% 30
Iraq Iraq 7.4 +1.36% 105
Iceland Iceland 8.85 +0.13% 26
Israel Israel 6.56 -0.597% 162
Italy Italy 5.82 -1.01% 195
Jamaica Jamaica 9.48 +1.78% 13
Jordan Jordan 8.36 +0.268% 43
Japan Japan 5.14 -0.418% 209
Kazakhstan Kazakhstan 7.79 -3.76% 71
Kenya Kenya 7.15 -1.02% 116
Kyrgyzstan Kyrgyzstan 7.82 -1.54% 69
Cambodia Cambodia 8.12 -1.88% 56
Kiribati Kiribati 7.68 +0.58% 82
St. Kitts & Nevis St. Kitts & Nevis 7.93 -2.85% 61
South Korea South Korea 7.46 +3.06% 102
Kuwait Kuwait 11.4 -0.0286% 7
Laos Laos 8.33 -0.308% 44
Lebanon Lebanon 5.62 -0.427% 200
Liberia Liberia 6.31 -0.0655% 175
Libya Libya 7.13 -1.3% 122
St. Lucia St. Lucia 9.13 +2.22% 20
Liechtenstein Liechtenstein 6.21 -2.08% 180
Sri Lanka Sri Lanka 7.01 +1.14% 136
Lesotho Lesotho 8.64 -2.43% 31
Lithuania Lithuania 8.27 -0.177% 46
Luxembourg Luxembourg 8.16 -0.84% 52
Latvia Latvia 7.13 -5.3% 121
Macao SAR China Macao SAR China 9.36 -5.75% 16
Saint Martin (French part) Saint Martin (French part) 4.46 -13.8% 214
Morocco Morocco 7.76 -1.04% 76
Monaco Monaco 4.74 +1.4% 212
Moldova Moldova 7.47 -4.76% 100
Madagascar Madagascar 6.8 +1.58% 150
Maldives Maldives 15.2 -0.413% 3
Mexico Mexico 7.94 +0.245% 59
Marshall Islands Marshall Islands 4.21 -16% 216
North Macedonia North Macedonia 6.82 -0.795% 148
Mali Mali 5.86 -0.462% 191
Malta Malta 9.67 -1.86% 11
Myanmar (Burma) Myanmar (Burma) 7.93 +0.238% 60
Montenegro Montenegro 6.35 -0.247% 171
Mongolia Mongolia 7.86 -5.19% 67
Northern Mariana Islands Northern Mariana Islands 5.22 -6.34% 208
Mozambique Mozambique 6.4 +0.713% 170
Mauritania Mauritania 6.13 +0.662% 184
Mauritius Mauritius 8.75 +0.175% 27
Malawi Malawi 6.71 +1.08% 157
Malaysia Malaysia 9.32 -0.507% 17
Namibia Namibia 8.04 +1.35% 57
New Caledonia New Caledonia 7.2 -2.08% 112
Niger Niger 5.67 +1.08% 199
Nigeria Nigeria 6.41 +0.296% 169
Nicaragua Nicaragua 8.43 +0.395% 40
Netherlands Netherlands 6.97 +0.955% 139
Norway Norway 7.23 -0.602% 110
Nepal Nepal 7.02 +1.11% 134
Nauru Nauru 7.9 -4.54% 62
New Zealand New Zealand 7.65 -0.578% 87
Oman Oman 13.8 -2.67% 4
Pakistan Pakistan 7.12 -0.0859% 123
Panama Panama 7.46 -0.401% 101
Peru Peru 7.89 -0.552% 64
Philippines Philippines 8.26 +0.791% 48
Palau Palau 8.4 -0.489% 42
Papua New Guinea Papua New Guinea 7.71 +0.199% 81
Poland Poland 7.17 -3.09% 114
Puerto Rico Puerto Rico 6.04 +2.12% 187
North Korea North Korea 7.64 +0.574% 88
Portugal Portugal 5.67 -0.395% 198
Paraguay Paraguay 8.4 -0.445% 41
Palestinian Territories Palestinian Territories 7.75 +0.126% 77
French Polynesia French Polynesia 7.11 -3.5% 125
Qatar Qatar 16.8 -2.43% 1
Romania Romania 6.21 -5.76% 181
Russia Russia 7.5 -7.71% 97
Rwanda Rwanda 7.04 -1.02% 131
Saudi Arabia Saudi Arabia 12.9 -1.98% 6
Sudan Sudan 6.73 +2.11% 156
Senegal Senegal 6.74 +1.96% 153
Singapore Singapore 10.4 +2.07% 9
Solomon Islands Solomon Islands 6.5 -0.786% 167
Sierra Leone Sierra Leone 7.05 +0.955% 130
El Salvador El Salvador 8.87 +4.53% 25
San Marino San Marino 4.77 -2.17% 211
Somalia Somalia 5.54 +2.7% 202
Serbia Serbia 6.32 -0.596% 174
South Sudan South Sudan 5.12 +1.32% 210
São Tomé & Príncipe São Tomé & Príncipe 5.99 -0.239% 189
Suriname Suriname 7.13 -0.131% 118
Slovakia Slovakia 7.17 -2.78% 113
Slovenia Slovenia 6.14 -3.37% 183
Sweden Sweden 7.45 -1.19% 103
Eswatini Eswatini 8.02 -0.643% 58
Sint Maarten Sint Maarten 5.85 +0.219% 192
Seychelles Seychelles 10.3 -0.92% 10
Syria Syria 6.74 +5.32% 154
Turks & Caicos Islands Turks & Caicos Islands 7.54 -4.2% 95
Chad Chad 6.19 +3.06% 182
Togo Togo 6.77 -0.189% 152
Thailand Thailand 7.33 -0.0141% 107
Tajikistan Tajikistan 7.82 -2% 70
Turkmenistan Turkmenistan 8.99 +0.771% 22
Timor-Leste Timor-Leste 7.04 +1.06% 132
Tonga Tonga 4.34 -4.45% 215
Trinidad & Tobago Trinidad & Tobago 7.73 -3.22% 79
Tunisia Tunisia 7.62 +0.0508% 89
Turkey Turkey 7.65 -0.031% 85
Tuvalu Tuvalu 7.13 -0.656% 119
Tanzania Tanzania 6.5 +0.319% 166
Uganda Uganda 6.8 +2.05% 149
Ukraine Ukraine 7.56 -5.07% 93
Uruguay Uruguay 7.61 +0.683% 90
United States United States 7.25 -1.19% 109
Uzbekistan Uzbekistan 8.63 -1.37% 32
St. Vincent & Grenadines St. Vincent & Grenadines 6.97 +3.58% 140
Venezuela Venezuela 6.29 -1.77% 176
British Virgin Islands British Virgin Islands 7.79 -1.22% 72
U.S. Virgin Islands U.S. Virgin Islands 5.24 -0.68% 207
Vietnam Vietnam 8.62 -3.2% 33
Vanuatu Vanuatu 7.07 -0.257% 129
Samoa Samoa 5.32 -1.2% 205
Kosovo Kosovo 7.82 -1.72% 68
Yemen Yemen 7.49 -0.39% 99
South Africa South Africa 9.09 -1.19% 21
Zambia Zambia 6.91 -0.174% 142
Zimbabwe Zimbabwe 5.37 -2.74% 204

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.3034.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.3034.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))