Population ages 30-34, female (% of female population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 5.87 -1.6% 186
Afghanistan Afghanistan 6.66 +2.3% 139
Angola Angola 6.28 -0.774% 172
Albania Albania 8.16 +2.43% 40
Andorra Andorra 6.57 -1.58% 147
United Arab Emirates United Arab Emirates 12.3 -1.34% 2
Argentina Argentina 7.41 +0.683% 78
Armenia Armenia 7.87 -3.42% 57
American Samoa American Samoa 6.28 -3.28% 171
Antigua & Barbuda Antigua & Barbuda 7.41 -0.306% 79
Australia Australia 7.3 -1.11% 90
Austria Austria 6.64 -0.932% 142
Azerbaijan Azerbaijan 9.22 -2.2% 12
Burundi Burundi 6.26 -3.52% 173
Belgium Belgium 6.45 -1.1% 159
Benin Benin 6.6 +0.591% 146
Burkina Faso Burkina Faso 6.53 +0.24% 149
Bangladesh Bangladesh 8.01 +2.28% 53
Bulgaria Bulgaria 5.73 -5.12% 194
Bahrain Bahrain 10.5 -0.663% 3
Bahamas Bahamas 8.29 +0.813% 32
Bosnia & Herzegovina Bosnia & Herzegovina 4.59 -4.3% 215
Belarus Belarus 6.41 -5.42% 160
Belize Belize 8.73 +0.769% 17
Bermuda Bermuda 5.23 -2.89% 207
Bolivia Bolivia 8.07 +0.269% 47
Brazil Brazil 7.46 -1.26% 76
Barbados Barbados 6.47 -0.338% 151
Brunei Brunei 8.41 -0.819% 27
Bhutan Bhutan 9.81 -1.44% 7
Botswana Botswana 9.22 +3.55% 11
Central African Republic Central African Republic 5.51 +1.7% 199
Canada Canada 6.99 -0.0181% 114
Switzerland Switzerland 6.71 -2.59% 135
Chile Chile 8.22 -0.139% 36
China China 7.2 -5.75% 101
Côte d’Ivoire Côte d’Ivoire 7.12 -2.58% 104
Cameroon Cameroon 6.88 -0.238% 121
Congo - Kinshasa Congo - Kinshasa 6.01 +0.413% 181
Congo - Brazzaville Congo - Brazzaville 6.32 -0.936% 168
Colombia Colombia 8.39 +1.25% 28
Comoros Comoros 6.85 -1.91% 126
Cape Verde Cape Verde 8.86 -0.986% 14
Costa Rica Costa Rica 7.81 -0.999% 61
Cuba Cuba 6.45 -4.24% 156
Curaçao Curaçao 7.27 +5.14% 94
Cayman Islands Cayman Islands 8.77 -2.51% 16
Cyprus Cyprus 8.19 -3.55% 38
Czechia Czechia 6.17 -2.43% 175
Germany Germany 5.98 -2.96% 182
Djibouti Djibouti 7.78 +0.409% 66
Dominica Dominica 8.42 +1.22% 26
Denmark Denmark 6.64 +1.43% 141
Dominican Republic Dominican Republic 7.69 +0.0451% 71
Algeria Algeria 7.37 -3.29% 80
Ecuador Ecuador 8.04 +0.295% 52
Egypt Egypt 7.35 -1.81% 82
Eritrea Eritrea 5.96 +1.72% 183
Spain Spain 5.49 -1.99% 200
Estonia Estonia 5.95 -6.36% 184
Ethiopia Ethiopia 7.12 +1.42% 105
Finland Finland 6.31 -0.209% 169
Fiji Fiji 7.71 -0.349% 69
France France 5.54 -2.3% 197
Faroe Islands Faroe Islands 6.38 -2.43% 161
Micronesia (Federated States of) Micronesia (Federated States of) 7.27 +3.48% 93
Gabon Gabon 7.36 -1.72% 81
United Kingdom United Kingdom 6.63 +0.0541% 143
Georgia Georgia 6.74 -3.46% 134
Ghana Ghana 7.23 -0.564% 100
Gibraltar Gibraltar 6.88 +1.22% 122
Guinea Guinea 7.03 +1.42% 111
Gambia Gambia 7.08 +1.34% 108
Guinea-Bissau Guinea-Bissau 6.95 +0.404% 116
Equatorial Guinea Equatorial Guinea 7.11 -2.74% 106
Greece Greece 4.89 -3.52% 211
Grenada Grenada 8.48 -3.54% 24
Greenland Greenland 8.6 -0.144% 20
Guatemala Guatemala 8.16 +1.12% 39
Guam Guam 6.3 +0.896% 170
Guyana Guyana 7.8 +3.17% 64
Hong Kong SAR China Hong Kong SAR China 6.79 -3.6% 132
Honduras Honduras 8.09 +0.719% 45
Croatia Croatia 5.17 -1.12% 208
Haiti Haiti 8.05 -0.0597% 50
Hungary Hungary 6.13 +0.283% 176
Indonesia Indonesia 7.3 -0.553% 89
Isle of Man Isle of Man 5.46 -1.91% 201
India India 8.1 -0.203% 44
Ireland Ireland 5.84 -2.31% 188
Iran Iran 8.64 -5.18% 19
Iraq Iraq 7.3 +1.22% 91
Iceland Iceland 8.16 +1.63% 41
Israel Israel 6.34 -0.862% 166
Italy Italy 5.31 -1.62% 203
Jamaica Jamaica 9 +1.77% 13
Jordan Jordan 7.76 +0.76% 67
Japan Japan 4.71 -0.513% 213
Kazakhstan Kazakhstan 7.24 -3.71% 98
Kenya Kenya 7.31 -0.0658% 88
Kyrgyzstan Kyrgyzstan 7.79 -1.05% 65
Cambodia Cambodia 8.06 -1.4% 49
Kiribati Kiribati 7.87 +0.199% 58
St. Kitts & Nevis St. Kitts & Nevis 7.67 -2.04% 72
South Korea South Korea 6.45 +2.03% 157
Kuwait Kuwait 9.24 -1.47% 10
Laos Laos 8.32 -0.155% 31
Lebanon Lebanon 6.61 -0.0114% 144
Liberia Liberia 6.33 -0.126% 167
Libya Libya 6.99 -1.32% 112
St. Lucia St. Lucia 8.55 +1.24% 21
Liechtenstein Liechtenstein 6.08 -0.398% 178
Sri Lanka Sri Lanka 6.81 -0.132% 130
Lesotho Lesotho 8.52 -2.41% 22
Lithuania Lithuania 6.61 +1.12% 145
Luxembourg Luxembourg 7.84 -1.36% 60
Latvia Latvia 5.79 -4.79% 190
Macao SAR China Macao SAR China 9.48 -3.93% 9
Saint Martin (French part) Saint Martin (French part) 5.03 -12.3% 210
Morocco Morocco 7.55 -1.13% 74
Monaco Monaco 4.38 +1.2% 216
Moldova Moldova 6.66 -3.87% 138
Madagascar Madagascar 6.8 +1.6% 131
Maldives Maldives 10.3 -3.1% 4
Mexico Mexico 7.86 -0.0473% 59
Marshall Islands Marshall Islands 4.69 -14.3% 214
North Macedonia North Macedonia 6.34 -1.13% 165
Mali Mali 5.8 -0.382% 189
Malta Malta 8.66 -2.7% 18
Myanmar (Burma) Myanmar (Burma) 7.7 +0.22% 70
Montenegro Montenegro 5.76 -0.5% 192
Mongolia Mongolia 7.45 -5.5% 77
Northern Mariana Islands Northern Mariana Islands 5.29 -5.04% 204
Mozambique Mozambique 6.45 +0.415% 158
Mauritania Mauritania 6.52 +0.395% 150
Mauritius Mauritius 7.87 +0.296% 56
Malawi Malawi 7.05 -0.339% 109
Malaysia Malaysia 8.47 -0.946% 25
Namibia Namibia 8.1 +1.32% 43
New Caledonia New Caledonia 7.23 -2.08% 99
Niger Niger 5.6 +1.17% 195
Nigeria Nigeria 6.35 +0.128% 164
Nicaragua Nicaragua 8.24 -0.209% 34
Netherlands Netherlands 6.7 +0.939% 136
Norway Norway 7.05 -0.633% 110
Nepal Nepal 8.19 +1.03% 37
Nauru Nauru 7.25 -4.99% 97
New Zealand New Zealand 7.35 -1.68% 83
Oman Oman 10 -1.35% 6
Pakistan Pakistan 6.98 -0.0413% 115
Panama Panama 7.35 -0.415% 84
Peru Peru 8.1 -0.33% 42
Philippines Philippines 8.05 +1.19% 51
Palau Palau 6.75 -1.69% 133
Papua New Guinea Papua New Guinea 7.8 -0.806% 63
Poland Poland 6.45 -3.22% 154
Puerto Rico Puerto Rico 5.77 +1.12% 191
North Korea North Korea 7.25 +0.677% 96
Portugal Portugal 5.1 -0.912% 209
Paraguay Paraguay 8.26 -0.491% 33
Palestinian Territories Palestinian Territories 7.73 +0.5% 68
French Polynesia French Polynesia 7.31 -4.2% 87
Qatar Qatar 13 -3.54% 1
Romania Romania 5.53 -5.61% 198
Russia Russia 6.37 -7.99% 162
Rwanda Rwanda 6.93 -1.26% 118
Saudi Arabia Saudi Arabia 10.1 -0.664% 5
Sudan Sudan 6.89 +1.3% 120
Senegal Senegal 7.1 +1.27% 107
Singapore Singapore 9.49 +0.728% 8
Solomon Islands Solomon Islands 6.65 -1.22% 140
Sierra Leone Sierra Leone 6.99 +1.08% 113
El Salvador El Salvador 8.07 +3.18% 48
San Marino San Marino 4.8 -0.742% 212
Somalia Somalia 5.59 +2.87% 196
Serbia Serbia 5.76 -1.15% 193
South Sudan South Sudan 5.26 +0.00867% 206
São Tomé & Príncipe São Tomé & Príncipe 6.02 -0.558% 180
Suriname Suriname 6.85 -0.0311% 124
Slovakia Slovakia 6.57 -2.87% 148
Slovenia Slovenia 5.36 -3.56% 202
Sweden Sweden 7.18 -1.07% 102
Eswatini Eswatini 7.93 -0.69% 54
Sint Maarten Sint Maarten 6.85 -3.05% 125
Seychelles Seychelles 8.08 +1.27% 46
Syria Syria 6.47 +5.16% 152
Turks & Caicos Islands Turks & Caicos Islands 7.17 -0.77% 103
Chad Chad 6.23 +2.94% 174
Togo Togo 6.67 -0.167% 137
Thailand Thailand 6.89 -0.296% 119
Tajikistan Tajikistan 7.8 -1.61% 62
Turkmenistan Turkmenistan 8.49 +1.14% 23
Timor-Leste Timor-Leste 7.26 +1.16% 95
Tonga Tonga 5.86 -0.919% 187
Trinidad & Tobago Trinidad & Tobago 7.34 -3.54% 86
Tunisia Tunisia 7.62 -0.995% 73
Turkey Turkey 7.34 -0.446% 85
Tuvalu Tuvalu 6.46 -1.14% 153
Tanzania Tanzania 6.45 +0.0499% 155
Uganda Uganda 6.84 +2.04% 128
Ukraine Ukraine 6.35 -4.32% 163
Uruguay Uruguay 6.94 +0.831% 117
United States United States 6.84 -1.26% 127
Uzbekistan Uzbekistan 8.38 -1.28% 29
St. Vincent & Grenadines St. Vincent & Grenadines 6.82 +1.64% 129
Venezuela Venezuela 6.07 -2.68% 179
British Virgin Islands British Virgin Islands 8.33 -3.35% 30
U.S. Virgin Islands U.S. Virgin Islands 5.28 -1.28% 205
Vietnam Vietnam 8.23 -2.87% 35
Vanuatu Vanuatu 7.91 -0.243% 55
Samoa Samoa 6.08 -1.06% 177
Kosovo Kosovo 7.28 -1.48% 92
Yemen Yemen 7.54 -0.307% 75
South Africa South Africa 8.81 -0.723% 15
Zambia Zambia 6.86 +0.122% 123
Zimbabwe Zimbabwe 5.94 -2.29% 185

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.3034.FE.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.3034.FE.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))