Population ages 15-64, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 66.6 -0.295% 84
Afghanistan Afghanistan 54.6 +0.65% 202
Angola Angola 52.4 +0.351% 208
Albania Albania 66.2 -0.53% 92
Andorra Andorra 72.8 -0.272% 18
United Arab Emirates United Arab Emirates 85.7 +0.154% 2
Argentina Argentina 67.1 +0.6% 75
Armenia Armenia 67.7 -0.0121% 65
American Samoa American Samoa 65.6 +0.0418% 105
Antigua & Barbuda Antigua & Barbuda 70.9 -0.0271% 22
Australia Australia 64.9 -0.178% 122
Austria Austria 66.7 -0.556% 81
Azerbaijan Azerbaijan 69.4 +0.142% 41
Burundi Burundi 52.5 +1.24% 207
Belgium Belgium 64.8 -0.186% 123
Benin Benin 55.2 +0.474% 200
Burkina Faso Burkina Faso 55.2 +1.08% 198
Bangladesh Bangladesh 64.1 +0.336% 131
Bulgaria Bulgaria 66.6 -0.176% 85
Bahrain Bahrain 81.4 +0.0433% 4
Bahamas Bahamas 70.6 +0.283% 28
Bosnia & Herzegovina Bosnia & Herzegovina 68 -0.537% 61
Belarus Belarus 69.1 -0.178% 45
Belize Belize 68.3 +0.378% 58
Bermuda Bermuda 66.8 -0.613% 80
Bolivia Bolivia 64.7 +0.411% 124
Brazil Brazil 69.7 -0.156% 34
Barbados Barbados 67.1 -0.168% 74
Brunei Brunei 73.6 -0.155% 15
Bhutan Bhutan 73.7 +0.611% 13
Botswana Botswana 64 +0.0789% 134
Central African Republic Central African Republic 46.6 +0.497% 216
Canada Canada 66 -0.364% 96
Switzerland Switzerland 66.3 -0.544% 90
Chile Chile 69.6 -0.0124% 37
China China 70.3 +0.493% 29
Côte d’Ivoire Côte d’Ivoire 56.9 +0.674% 187
Cameroon Cameroon 55.6 +0.521% 195
Congo - Kinshasa Congo - Kinshasa 50.7 +0.0785% 214
Congo - Brazzaville Congo - Brazzaville 56.5 +0.65% 190
Colombia Colombia 70.3 -0.0501% 30
Comoros Comoros 58.5 +0.544% 175
Cape Verde Cape Verde 68.9 +0.853% 50
Costa Rica Costa Rica 69.4 +0.112% 40
Cuba Cuba 69.1 -0.15% 47
Curaçao Curaçao 70.8 +0.042% 24
Cayman Islands Cayman Islands 75.4 -0.388% 9
Cyprus Cyprus 70.2 -0.446% 31
Czechia Czechia 66.1 -0.0138% 94
Germany Germany 64.7 -0.623% 125
Djibouti Djibouti 65.9 +0.459% 101
Dominica Dominica 69.7 -0.15% 35
Denmark Denmark 64.4 -0.111% 128
Dominican Republic Dominican Republic 65.9 +0.113% 102
Algeria Algeria 63.4 +0.161% 139
Ecuador Ecuador 67.4 +0.488% 69
Egypt Egypt 63.2 +0.49% 146
Eritrea Eritrea 57.4 +0.922% 183
Spain Spain 67.6 -0.179% 66
Estonia Estonia 67.2 -0.0419% 73
Ethiopia Ethiopia 57.4 +0.448% 182
Finland Finland 63.4 -0.00201% 138
Fiji Fiji 66.6 +0.164% 83
France France 62.8 -0.147% 149
Faroe Islands Faroe Islands 63.5 +0.311% 137
Micronesia (Federated States of) Micronesia (Federated States of) 62 +0.144% 153
Gabon Gabon 60.1 +0.163% 165
United Kingdom United Kingdom 64 -0.00976% 133
Georgia Georgia 65.2 +0.0249% 114
Ghana Ghana 60.4 +0.461% 163
Gibraltar Gibraltar 65.3 +0.0175% 111
Guinea Guinea 55.1 +0.67% 201
Gambia Gambia 56.4 +0.741% 191
Guinea-Bissau Guinea-Bissau 57.8 +0.803% 178
Equatorial Guinea Equatorial Guinea 61 +0.105% 160
Greece Greece 64.6 -0.0138% 126
Grenada Grenada 69.2 +0.0742% 43
Greenland Greenland 68.4 -1.1% 55
Guatemala Guatemala 63.3 +0.764% 142
Guam Guam 62.1 -0.718% 152
Guyana Guyana 63.8 -0.0817% 136
Hong Kong SAR China Hong Kong SAR China 64.5 -1.31% 127
Honduras Honduras 65 +0.438% 119
Croatia Croatia 65.4 -0.219% 107
Haiti Haiti 64.2 +0.474% 130
Hungary Hungary 67.8 -0.0888% 63
Indonesia Indonesia 68.6 +0.174% 52
Isle of Man Isle of Man 63.3 -0.171% 141
India India 68.5 +0.341% 53
Ireland Ireland 65.7 +0.219% 103
Iran Iran 69.4 +0.126% 39
Iraq Iraq 59.9 +0.885% 167
Iceland Iceland 67.4 +0.00664% 71
Israel Israel 60.5 +0.151% 162
Italy Italy 65.3 -0.216% 113
Jamaica Jamaica 73.6 +0.225% 16
Jordan Jordan 65.4 +0.463% 109
Japan Japan 61.1 +0.0186% 158
Kazakhstan Kazakhstan 62.7 -0.224% 150
Kenya Kenya 60.1 +0.926% 166
Kyrgyzstan Kyrgyzstan 61.7 +0.234% 155
Cambodia Cambodia 64.1 +0.269% 132
Kiribati Kiribati 60.3 +0.116% 164
St. Kitts & Nevis St. Kitts & Nevis 70.6 -0.453% 27
South Korea South Korea 72.2 -0.664% 20
Kuwait Kuwait 82 +0.203% 3
Laos Laos 65.1 +0.365% 115
Lebanon Lebanon 63.2 +0.502% 143
Liberia Liberia 56.9 +0.821% 186
Libya Libya 67.8 +0.618% 62
St. Lucia St. Lucia 73.6 +0.104% 14
Liechtenstein Liechtenstein 65.4 -0.572% 110
Sri Lanka Sri Lanka 66.4 +0.0481% 87
Lesotho Lesotho 61.6 +0.649% 156
Lithuania Lithuania 69.3 -0.157% 42
Luxembourg Luxembourg 69.8 -0.522% 32
Latvia Latvia 66.9 -0.138% 79
Macao SAR China Macao SAR China 69.6 -0.954% 36
Saint Martin (French part) Saint Martin (French part) 59.8 -2.33% 168
Morocco Morocco 66.3 +0.178% 89
Monaco Monaco 50.9 -0.158% 213
Moldova Moldova 65.6 -0.487% 106
Madagascar Madagascar 57.2 +0.433% 185
Maldives Maldives 79.3 +0.205% 5
Mexico Mexico 66.7 +0.287% 82
Marshall Islands Marshall Islands 60.8 +0.0582% 161
North Macedonia North Macedonia 66.4 -0.41% 88
Mali Mali 51.6 +0.653% 210
Malta Malta 69 -0.369% 49
Myanmar (Burma) Myanmar (Burma) 68.7 +0.0326% 51
Montenegro Montenegro 65.4 -0.194% 108
Mongolia Mongolia 62.8 +0.4% 147
Northern Mariana Islands Northern Mariana Islands 68.5 -0.646% 54
Mozambique Mozambique 52.1 +0.688% 209
Mauritania Mauritania 52.9 +0.692% 206
Mauritius Mauritius 73.1 -0.39% 17
Malawi Malawi 56.1 +1.13% 193
Malaysia Malaysia 71.4 +0.315% 21
Namibia Namibia 59.5 +0.368% 170
New Caledonia New Caledonia 67.2 -0.154% 72
Niger Niger 51 +0.664% 212
Nigeria Nigeria 56 +0.848% 194
Nicaragua Nicaragua 65.7 +0.5% 104
Netherlands Netherlands 65.3 -0.303% 112
Norway Norway 65.9 +0.0699% 99
Nepal Nepal 63.2 +0.104% 145
Nauru Nauru 59.7 +0.624% 169
New Zealand New Zealand 65.1 -0.14% 118
Oman Oman 77.7 +0.629% 6
Pakistan Pakistan 59.1 +0.423% 173
Panama Panama 66 +0.166% 95
Peru Peru 66.9 +0.265% 78
Philippines Philippines 66.9 +0.762% 77
Palau Palau 72.5 -0.349% 19
Papua New Guinea Papua New Guinea 62.8 +0.36% 148
Poland Poland 67.5 -0.374% 68
Puerto Rico Puerto Rico 64.9 +0.102% 121
North Korea North Korea 69.8 -0.538% 33
Portugal Portugal 64.2 -0.447% 129
Paraguay Paraguay 65.1 +0.0747% 117
Palestinian Territories Palestinian Territories 57.5 +0.466% 180
French Polynesia French Polynesia 69.5 +0.0588% 38
Qatar Qatar 87.8 -0.0449% 1
Romania Romania 67 -0.0213% 76
Russia Russia 68.3 -0.335% 56
Rwanda Rwanda 58.2 +0.511% 176
Saudi Arabia Saudi Arabia 77.2 +0.097% 7
Sudan Sudan 55.2 +0.201% 199
Senegal Senegal 57.6 +0.873% 179
Singapore Singapore 76.2 -0.567% 8
Solomon Islands Solomon Islands 59.2 +0.672% 172
Sierra Leone Sierra Leone 58.7 +0.716% 174
El Salvador El Salvador 66.5 +0.565% 86
San Marino San Marino 66.2 -0.536% 93
Somalia Somalia 50.5 +0.12% 215
Serbia Serbia 64.9 -0.339% 120
South Sudan South Sudan 57.5 +1.58% 181
São Tomé & Príncipe São Tomé & Príncipe 58.2 +0.648% 177
Suriname Suriname 67.4 +0.0505% 70
Slovakia Slovakia 68.1 -0.461% 59
Slovenia Slovenia 65.9 -0.389% 100
Sweden Sweden 63.3 +0.0947% 140
Eswatini Eswatini 62.4 +0.366% 151
Sint Maarten Sint Maarten 69.1 +0.167% 46
Seychelles Seychelles 74.3 -0.12% 11
Syria Syria 66 +1.81% 97
Turks & Caicos Islands Turks & Caicos Islands 74.1 -0.443% 12
Chad Chad 51.6 +1.29% 211
Togo Togo 57.4 +0.555% 184
Thailand Thailand 70.7 -0.335% 25
Tajikistan Tajikistan 59.2 +0.0564% 171
Turkmenistan Turkmenistan 64 -0.0947% 135
Timor-Leste Timor-Leste 61.2 +0.988% 157
Tonga Tonga 55.3 +0.0186% 197
Trinidad & Tobago Trinidad & Tobago 70.9 -0.276% 23
Tunisia Tunisia 66.3 +0.116% 91
Turkey Turkey 69 +0.191% 48
Tuvalu Tuvalu 61 -0.857% 159
Tanzania Tanzania 54.2 +0.392% 203
Uganda Uganda 54 +0.676% 204
Ukraine Ukraine 70.7 +0.0619% 26
Uruguay Uruguay 67.7 +0.29% 64
United States United States 66 -0.317% 98
Uzbekistan Uzbekistan 63.2 -0.631% 144
St. Vincent & Grenadines St. Vincent & Grenadines 67.6 +0.0505% 67
Venezuela Venezuela 65.1 +0.505% 116
British Virgin Islands British Virgin Islands 75.3 +0.45% 10
U.S. Virgin Islands U.S. Virgin Islands 61.8 -0.426% 154
Vietnam Vietnam 68.3 +0.0083% 57
Vanuatu Vanuatu 56.7 +0.511% 188
Samoa Samoa 55.3 +0.137% 196
Kosovo Kosovo 69.2 +0.274% 44
Yemen Yemen 56.2 +0.153% 192
South Africa South Africa 68 +0.0755% 60
Zambia Zambia 56.5 +0.821% 189
Zimbabwe Zimbabwe 53.8 +1.04% 205

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.1564.MA.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.1564.MA.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))