Population ages 15-64, female (% of female population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 65.7 -0.727% 74
Afghanistan Afghanistan 54.9 +0.509% 204
Angola Angola 53.2 +0.335% 208
Albania Albania 66.2 -0.727% 64
Andorra Andorra 71.5 -0.18% 11
United Arab Emirates United Arab Emirates 75.7 +0.306% 2
Argentina Argentina 64.9 +0.538% 83
Armenia Armenia 66.5 -0.503% 62
American Samoa American Samoa 64.3 -0.0155% 94
Antigua & Barbuda Antigua & Barbuda 70 -0.324% 20
Australia Australia 64 -0.31% 103
Austria Austria 63.6 -0.567% 111
Azerbaijan Azerbaijan 69.9 -0.169% 21
Burundi Burundi 53 +1.23% 209
Belgium Belgium 62.2 -0.187% 131
Benin Benin 55.5 +0.446% 202
Burkina Faso Burkina Faso 55.9 +0.989% 201
Bangladesh Bangladesh 66.8 +0.259% 58
Bulgaria Bulgaria 60.6 -0.246% 154
Bahrain Bahrain 71 +0.154% 14
Bahamas Bahamas 70 +0.116% 19
Bosnia & Herzegovina Bosnia & Herzegovina 61.8 -0.714% 134
Belarus Belarus 63.3 -0.497% 115
Belize Belize 68.5 +0.301% 33
Bermuda Bermuda 62.6 -1.11% 122
Bolivia Bolivia 64.4 +0.413% 89
Brazil Brazil 68.8 -0.259% 29
Barbados Barbados 65.4 -0.459% 77
Brunei Brunei 70.9 -0.287% 15
Bhutan Bhutan 71.3 +0.571% 12
Botswana Botswana 63.7 +0.189% 109
Central African Republic Central African Republic 50.9 +0.00345% 214
Canada Canada 64.2 -0.396% 95
Switzerland Switzerland 63.8 -0.52% 107
Chile Chile 68.2 -0.0564% 37
China China 68.3 +0.172% 35
Côte d’Ivoire Côte d’Ivoire 56.2 +0.623% 196
Cameroon Cameroon 55.9 +0.555% 199
Congo - Kinshasa Congo - Kinshasa 51.1 +0.11% 213
Congo - Brazzaville Congo - Brazzaville 56.7 +0.656% 192
Colombia Colombia 69.7 -0.169% 22
Comoros Comoros 58.3 +0.421% 179
Cape Verde Cape Verde 66.2 +0.77% 65
Costa Rica Costa Rica 68.6 -0.0369% 32
Cuba Cuba 67.2 -0.299% 53
Curaçao Curaçao 66 -0.576% 71
Cayman Islands Cayman Islands 74.2 -0.544% 3
Cyprus Cyprus 68.4 -0.448% 34
Czechia Czechia 61.5 -0.0602% 140
Germany Germany 61.1 -0.642% 147
Djibouti Djibouti 66.1 +0.422% 69
Dominica Dominica 68.6 +0.228% 31
Denmark Denmark 62.5 -0.189% 127
Dominican Republic Dominican Republic 65.2 -0.000199% 80
Algeria Algeria 62.7 +0.173% 120
Ecuador Ecuador 67 +0.402% 56
Egypt Egypt 62.6 +0.448% 124
Eritrea Eritrea 57.9 +0.789% 183
Spain Spain 64.3 -0.289% 92
Estonia Estonia 59.4 -0.138% 168
Ethiopia Ethiopia 58 +0.411% 182
Finland Finland 59.5 -0.0572% 166
Fiji Fiji 66.2 +0.283% 67
France France 60 -0.236% 161
Faroe Islands Faroe Islands 61 +0.268% 149
Micronesia (Federated States of) Micronesia (Federated States of) 62.4 +0.0592% 128
Gabon Gabon 58.7 +0.304% 175
United Kingdom United Kingdom 62.6 -0.109% 123
Georgia Georgia 62.2 -0.259% 132
Ghana Ghana 60.6 +0.484% 155
Gibraltar Gibraltar 64.2 -0.016% 96
Guinea Guinea 56.1 +0.519% 197
Gambia Gambia 56.9 +0.619% 190
Guinea-Bissau Guinea-Bissau 58.3 +0.614% 180
Equatorial Guinea Equatorial Guinea 56.8 +0.384% 191
Greece Greece 61.2 -0.269% 145
Grenada Grenada 67.5 +0.0328% 50
Greenland Greenland 68.3 -0.889% 36
Guatemala Guatemala 63.8 +0.651% 106
Guam Guam 60.7 -0.729% 152
Guyana Guyana 64.4 -0.204% 88
Hong Kong SAR China Hong Kong SAR China 68.7 -1.17% 30
Honduras Honduras 65 +0.334% 82
Croatia Croatia 60.5 -0.282% 157
Haiti Haiti 64 +0.455% 101
Hungary Hungary 61.7 -0.196% 138
Indonesia Indonesia 67.6 +0.11% 46
Isle of Man Isle of Man 61.9 -0.274% 133
India India 67.9 +0.269% 43
Ireland Ireland 65.4 +0.121% 78
Iran Iran 69.2 +0.0905% 26
Iraq Iraq 60.1 +0.77% 160
Iceland Iceland 65.8 -0.0195% 72
Israel Israel 59.6 +0.0762% 164
Italy Italy 61.8 -0.271% 135
Jamaica Jamaica 72.6 +0.00718% 8
Jordan Jordan 64.2 +0.655% 97
Japan Japan 56.6 -0.0357% 194
Kazakhstan Kazakhstan 61.3 -0.352% 142
Kenya Kenya 60.3 +0.946% 158
Kyrgyzstan Kyrgyzstan 62.3 +0.0128% 130
Cambodia Cambodia 64 +0.0945% 102
Kiribati Kiribati 61.8 +0.263% 136
St. Kitts & Nevis St. Kitts & Nevis 70.5 -0.621% 16
South Korea South Korea 68.1 -0.856% 39
Kuwait Kuwait 73.4 +0.474% 5
Laos Laos 65.2 +0.34% 81
Lebanon Lebanon 64.1 +0.188% 99
Liberia Liberia 57.5 +0.73% 185
Libya Libya 67.3 +0.595% 51
St. Lucia St. Lucia 72.1 -0.062% 9
Liechtenstein Liechtenstein 64.6 -0.892% 85
Sri Lanka Sri Lanka 65.3 -0.147% 79
Lesotho Lesotho 61.7 +0.577% 139
Lithuania Lithuania 61.4 -0.25% 141
Luxembourg Luxembourg 67.6 -0.424% 45
Latvia Latvia 59.4 -0.266% 167
Macao SAR China Macao SAR China 73.7 -0.746% 4
Saint Martin (French part) Saint Martin (French part) 60.7 -2.25% 153
Morocco Morocco 66.1 +0.0914% 68
Monaco Monaco 49.8 -0.247% 216
Moldova Moldova 62.7 -0.72% 121
Madagascar Madagascar 57.5 +0.426% 184
Maldives Maldives 70.1 +0.292% 18
Mexico Mexico 67.8 +0.154% 44
Marshall Islands Marshall Islands 60.9 -0.154% 151
North Macedonia North Macedonia 64 -0.44% 104
Mali Mali 51.3 +0.674% 211
Malta Malta 64.3 -0.51% 90
Myanmar (Burma) Myanmar (Burma) 68.1 -0.0325% 38
Montenegro Montenegro 62.8 -0.304% 118
Mongolia Mongolia 62.5 +0.146% 126
Northern Mariana Islands Northern Mariana Islands 67.9 -0.62% 42
Mozambique Mozambique 53.4 +0.426% 207
Mauritania Mauritania 55.2 +0.48% 203
Mauritius Mauritius 70.3 -0.357% 17
Malawi Malawi 57.3 +1.07% 186
Malaysia Malaysia 69.4 +0.299% 24
Namibia Namibia 59.2 +0.345% 169
New Caledonia New Caledonia 67.3 -0.188% 52
Niger Niger 50.6 +0.69% 215
Nigeria Nigeria 55.9 +0.802% 200
Nicaragua Nicaragua 65.8 +0.39% 73
Netherlands Netherlands 63.7 -0.297% 110
Norway Norway 64.1 +0.136% 98
Nepal Nepal 66.8 +0.298% 59
Nauru Nauru 59 +0.15% 171
New Zealand New Zealand 64.3 -0.296% 91
Oman Oman 64.3 +0.867% 93
Pakistan Pakistan 58.9 +0.493% 172
Panama Panama 65.5 +0.0922% 76
Peru Peru 66.7 +0.192% 60
Philippines Philippines 66.4 +0.779% 63
Palau Palau 68 -0.178% 41
Papua New Guinea Papua New Guinea 63.4 +0.301% 114
Poland Poland 62.7 -0.518% 119
Puerto Rico Puerto Rico 62.6 -0.389% 125
North Korea North Korea 67.6 -0.443% 47
Portugal Portugal 61.3 -0.588% 143
Paraguay Paraguay 64.7 +0.00129% 84
Palestinian Territories Palestinian Territories 58.7 +0.526% 174
French Polynesia French Polynesia 69.6 +0.0369% 23
Qatar Qatar 72.1 +0.25% 10
Romania Romania 61.8 -0.188% 137
Russia Russia 63.1 -0.67% 116
Rwanda Rwanda 59.2 +0.405% 170
Saudi Arabia Saudi Arabia 67.1 +0.435% 55
Sudan Sudan 57.2 +0.113% 187
Senegal Senegal 58.8 +0.577% 173
Singapore Singapore 73 -0.66% 6
Solomon Islands Solomon Islands 59.6 +0.616% 165
Sierra Leone Sierra Leone 58.7 +0.681% 177
El Salvador El Salvador 67.5 +0.222% 48
San Marino San Marino 64.5 -0.346% 87
Somalia Somalia 51.1 +0.11% 212
Serbia Serbia 61.2 -0.624% 144
South Sudan South Sudan 58.7 +1.41% 176
São Tomé & Príncipe São Tomé & Príncipe 58.3 +0.8% 178
Suriname Suriname 65.5 +0.0395% 75
Slovakia Slovakia 63.4 -0.571% 113
Slovenia Slovenia 61.1 -0.319% 148
Sweden Sweden 61.2 +0.0768% 146
Eswatini Eswatini 62.4 +0.284% 129
Sint Maarten Sint Maarten 72.7 -0.345% 7
Seychelles Seychelles 68.1 +0.102% 40
Syria Syria 66.2 +1.63% 66
Turks & Caicos Islands Turks & Caicos Islands 71.3 -0.113% 13
Chad Chad 52.1 +1.24% 210
Togo Togo 57.2 +0.522% 188
Thailand Thailand 69.1 -0.527% 27
Tajikistan Tajikistan 60.5 +0.0887% 156
Turkmenistan Turkmenistan 64 -0.198% 105
Timor-Leste Timor-Leste 60.9 +1.09% 150
Tonga Tonga 60.2 +0.298% 159
Trinidad & Tobago Trinidad & Tobago 68.9 -0.458% 28
Tunisia Tunisia 66.6 -0.0163% 61
Turkey Turkey 67.5 +0.125% 49
Tuvalu Tuvalu 59.7 -1.58% 163
Tanzania Tanzania 54.6 +0.295% 205
Uganda Uganda 54.6 +0.649% 206
Ukraine Ukraine 64.1 -0.0504% 100
Uruguay Uruguay 63.7 +0.197% 108
United States United States 63.5 -0.382% 112
Uzbekistan Uzbekistan 62.8 -0.636% 117
St. Vincent & Grenadines St. Vincent & Grenadines 66.1 +0.0334% 70
Venezuela Venezuela 64.5 +0.368% 86
British Virgin Islands British Virgin Islands 76.4 +0.169% 1
U.S. Virgin Islands U.S. Virgin Islands 59.9 -0.932% 162
Vietnam Vietnam 67.2 -0.137% 54
Vanuatu Vanuatu 58.1 +0.265% 181
Samoa Samoa 56 +0.182% 198
Kosovo Kosovo 69.3 +0.171% 25
Yemen Yemen 56.5 +0.139% 195
South Africa South Africa 66.9 +0.00139% 57
Zambia Zambia 56.6 +0.782% 193
Zimbabwe Zimbabwe 57.1 +0.691% 189

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.1564.FE.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.1564.FE.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))