Population ages 15-19, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 7.02 -1.02% 130
Afghanistan Afghanistan 11.4 -0.905% 18
Angola Angola 10.7 +1.15% 38
Albania Albania 6.29 -2.33% 153
Andorra Andorra 5.46 +0.651% 188
United Arab Emirates United Arab Emirates 3.79 -4.46% 215
Argentina Argentina 8.05 +0.811% 106
Armenia Armenia 7 +3.24% 132
American Samoa American Samoa 10.2 -0.0172% 56
Antigua & Barbuda Antigua & Barbuda 7.38 +1.53% 121
Australia Australia 6.3 +1.64% 151
Austria Austria 5 -0.268% 204
Azerbaijan Azerbaijan 7.92 +3.69% 108
Burundi Burundi 11.6 +2.75% 12
Belgium Belgium 6.03 +1.77% 168
Benin Benin 10.8 +0.148% 35
Burkina Faso Burkina Faso 11.6 +1.23% 11
Bangladesh Bangladesh 10.1 -0.144% 57
Bulgaria Bulgaria 5.34 +2.84% 191
Bahrain Bahrain 4.55 +0.49% 210
Bahamas Bahamas 7.52 +1.1% 116
Bosnia & Herzegovina Bosnia & Herzegovina 5.64 -0.826% 179
Belarus Belarus 5.92 +5.45% 172
Belize Belize 9.34 -2.31% 75
Bermuda Bermuda 5.58 +1.6% 183
Bolivia Bolivia 9.62 -0.458% 67
Brazil Brazil 7.26 -1.62% 126
Barbados Barbados 6.83 +0.846% 135
Brunei Brunei 6.76 -2.24% 136
Bhutan Bhutan 8.33 -2.3% 98
Botswana Botswana 9.8 -2.43% 65
Central African Republic Central African Republic 12.7 -1.08% 3
Canada Canada 5.6 +0.71% 181
Switzerland Switzerland 5.06 +1.05% 202
Chile Chile 6.3 -0.077% 152
China China 6.21 +2.31% 157
Côte d’Ivoire Côte d’Ivoire 10.7 +1.99% 36
Cameroon Cameroon 10.9 +0.386% 34
Congo - Kinshasa Congo - Kinshasa 10.5 +0.436% 47
Congo - Brazzaville Congo - Brazzaville 10.7 +2.11% 39
Colombia Colombia 7.76 -2.47% 113
Comoros Comoros 10.3 -0.108% 55
Cape Verde Cape Verde 9.34 +0.513% 76
Costa Rica Costa Rica 7.29 +0.0818% 125
Cuba Cuba 5.49 -0.695% 187
Curaçao Curaçao 6.05 -1.71% 164
Cayman Islands Cayman Islands 5.26 +4.25% 198
Cyprus Cyprus 5.05 +0.143% 203
Czechia Czechia 5.58 +3.02% 184
Germany Germany 4.76 +0.365% 207
Djibouti Djibouti 10 -2% 60
Dominica Dominica 6.39 -0.279% 147
Denmark Denmark 6.04 +0.141% 167
Dominican Republic Dominican Republic 8.74 -0.51% 89
Algeria Algeria 7.83 +4.11% 110
Ecuador Ecuador 8.9 -0.361% 85
Egypt Egypt 9.34 +0.916% 77
Eritrea Eritrea 12.3 -0.621% 4
Spain Spain 5.6 +1.48% 182
Estonia Estonia 6.07 +3.81% 161
Ethiopia Ethiopia 11.2 -1.03% 23
Finland Finland 5.83 +1.46% 175
Fiji Fiji 8.8 +0.723% 88
France France 6.56 +0.34% 142
Faroe Islands Faroe Islands 6.85 -0.508% 134
Micronesia (Federated States of) Micronesia (Federated States of) 10.4 -0.0351% 50
Gabon Gabon 9.19 +1.48% 79
United Kingdom United Kingdom 6.18 +2.18% 158
Georgia Georgia 6.73 +4.31% 138
Ghana Ghana 10.3 -0.0861% 54
Gibraltar Gibraltar 6.23 +0.0998% 156
Guinea Guinea 11.1 +0.156% 27
Gambia Gambia 11.2 +0.691% 25
Guinea-Bissau Guinea-Bissau 11.1 +0.211% 26
Equatorial Guinea Equatorial Guinea 9.14 +1.48% 81
Greece Greece 5.6 +2.04% 180
Grenada Grenada 7.45 +1.01% 119
Greenland Greenland 6.07 +0.983% 162
Guatemala Guatemala 10.5 -1.51% 46
Guam Guam 7.24 +0.347% 127
Guyana Guyana 9.06 +0.504% 82
Hong Kong SAR China Hong Kong SAR China 4.26 +1.43% 213
Honduras Honduras 9.97 -1.7% 62
Croatia Croatia 5.65 +2.24% 178
Haiti Haiti 10 -0.424% 59
Hungary Hungary 5.57 +1.42% 185
Indonesia Indonesia 8.4 +0.293% 97
Isle of Man Isle of Man 5.85 +1.56% 174
India India 8.92 -1.55% 83
Ireland Ireland 7.03 +1.99% 129
Iran Iran 7.01 +1.66% 131
Iraq Iraq 10.6 +0.401% 45
Iceland Iceland 6.36 +1.59% 148
Israel Israel 8.18 +0.411% 101
Italy Italy 5.15 +0.446% 199
Jamaica Jamaica 8.06 -2.28% 105
Jordan Jordan 9.55 +1.57% 73
Japan Japan 4.81 +0.157% 206
Kazakhstan Kazakhstan 8.14 +4.66% 103
Kenya Kenya 11.6 +0.812% 13
Kyrgyzstan Kyrgyzstan 8.86 +3.16% 86
Cambodia Cambodia 9.61 +0.341% 70
Kiribati Kiribati 9.35 +2.42% 74
St. Kitts & Nevis St. Kitts & Nevis 6.62 -0.168% 140
South Korea South Korea 4.6 -0.512% 209
Kuwait Kuwait 4.83 +3.11% 205
Laos Laos 9.58 -0.597% 71
Lebanon Lebanon 9.61 +0.312% 69
Liberia Liberia 11.6 +0.74% 14
Libya Libya 9.3 +0.31% 78
St. Lucia St. Lucia 7.17 -1.04% 128
Liechtenstein Liechtenstein 5.27 +2.17% 197
Sri Lanka Sri Lanka 8.18 -0.342% 102
Lesotho Lesotho 10.6 +0.113% 43
Lithuania Lithuania 5.32 +1.7% 194
Luxembourg Luxembourg 5.34 +0.0767% 192
Latvia Latvia 6.04 +3.2% 166
Macao SAR China Macao SAR China 4.34 +2.65% 211
Saint Martin (French part) Saint Martin (French part) 8.04 +1.25% 107
Morocco Morocco 8.5 +1.1% 96
Monaco Monaco 4.26 +1.02% 212
Moldova Moldova 6.55 +3.92% 144
Madagascar Madagascar 10.7 -0.0878% 37
Maldives Maldives 5.29 +5.08% 195
Mexico Mexico 8.91 -0.931% 84
Marshall Islands Marshall Islands 12.9 +3.65% 2
North Macedonia North Macedonia 5.88 +1.09% 173
Mali Mali 11.4 +0.657% 16
Malta Malta 4.25 +1.6% 214
Myanmar (Burma) Myanmar (Burma) 8.28 -1.42% 100
Montenegro Montenegro 6.59 +1.74% 141
Mongolia Mongolia 8.11 +7.18% 104
Northern Mariana Islands Northern Mariana Islands 8.66 +1.9% 91
Mozambique Mozambique 11.2 +0.69% 24
Mauritania Mauritania 11.1 +1.03% 28
Mauritius Mauritius 6.66 -4.4% 139
Malawi Malawi 12.1 +0.513% 6
Malaysia Malaysia 7.84 -2.97% 109
Namibia Namibia 9.61 -0.164% 68
New Caledonia New Caledonia 7.46 -1.13% 118
Niger Niger 11.4 +0.476% 17
Nigeria Nigeria 11.3 +0.915% 20
Nicaragua Nicaragua 9.71 -0.492% 66
Netherlands Netherlands 5.72 -1.29% 177
Norway Norway 6.16 +1.33% 159
Nepal Nepal 10.4 -1.28% 48
Nauru Nauru 10.7 +6.49% 41
New Zealand New Zealand 6.56 +1.49% 143
Oman Oman 4.62 +1.59% 208
Pakistan Pakistan 10.7 +1.02% 40
Panama Panama 8.29 -0.529% 99
Peru Peru 8.63 -0.721% 93
Philippines Philippines 9.9 +0.551% 63
Palau Palau 6.25 +0.849% 155
Papua New Guinea Papua New Guinea 10.1 -0.576% 58
Poland Poland 5.49 +3.92% 186
Puerto Rico Puerto Rico 6.29 -1.11% 154
North Korea North Korea 6.41 -1.59% 146
Portugal Portugal 5.32 -0.603% 193
Paraguay Paraguay 8.62 -0.485% 94
Palestinian Territories Palestinian Territories 10.3 +1.03% 53
French Polynesia French Polynesia 7.8 +0.674% 111
Qatar Qatar 3 +8.04% 216
Romania Romania 6.06 +1.44% 163
Russia Russia 6.04 +3.39% 165
Rwanda Rwanda 11.4 -1.38% 15
Saudi Arabia Saudi Arabia 6.07 +1.06% 160
Sudan Sudan 11 -0.58% 32
Senegal Senegal 11.3 +0.11% 22
Singapore Singapore 5.98 -11.3% 170
Solomon Islands Solomon Islands 10.3 -0.0772% 52
Sierra Leone Sierra Leone 11 -0.13% 30
El Salvador El Salvador 9.57 -1.14% 72
San Marino San Marino 5.44 +0.545% 189
Somalia Somalia 10.9 -1.16% 33
Serbia Serbia 5.27 -0.495% 196
South Sudan South Sudan 13 +0.903% 1
São Tomé & Príncipe São Tomé & Príncipe 11.6 +0.485% 10
Suriname Suriname 8.71 -0.687% 90
Slovakia Slovakia 5.35 +2.13% 190
Slovenia Slovenia 5.07 +4.57% 201
Sweden Sweden 5.98 +1.45% 171
Eswatini Eswatini 10.6 -0.542% 44
Sint Maarten Sint Maarten 6.9 +4.27% 133
Seychelles Seychelles 5.73 +0.267% 176
Syria Syria 12.1 -1.2% 5
Turks & Caicos Islands Turks & Caicos Islands 5.08 +2.22% 200
Chad Chad 11 -0.319% 31
Togo Togo 10.6 +1.22% 42
Thailand Thailand 6.31 -1.21% 149
Tajikistan Tajikistan 8.8 +3.95% 87
Turkmenistan Turkmenistan 7.67 +3.03% 114
Timor-Leste Timor-Leste 11.3 -2.13% 21
Tonga Tonga 11.7 +1.82% 8
Trinidad & Tobago Trinidad & Tobago 6.47 +0.167% 145
Tunisia Tunisia 7.52 +2.49% 115
Turkey Turkey 7.34 -0.319% 123
Tuvalu Tuvalu 9.19 +1.63% 80
Tanzania Tanzania 11 -0.577% 29
Uganda Uganda 11.7 -0.668% 9
Ukraine Ukraine 5.99 +5.4% 169
Uruguay Uruguay 7.3 -0.585% 124
United States United States 6.76 +0.0876% 137
Uzbekistan Uzbekistan 7.79 +2.32% 112
St. Vincent & Grenadines St. Vincent & Grenadines 7.41 +2.09% 120
Venezuela Venezuela 9.99 +0.434% 61
British Virgin Islands British Virgin Islands 7.35 +3.88% 122
U.S. Virgin Islands U.S. Virgin Islands 6.3 +0.783% 150
Vietnam Vietnam 7.47 +1.99% 117
Vanuatu Vanuatu 9.84 +2.32% 64
Samoa Samoa 10.4 +3.16% 51
Kosovo Kosovo 8.59 -0.457% 95
Yemen Yemen 10.4 -0.635% 49
South Africa South Africa 8.65 +0.931% 92
Zambia Zambia 11.3 +0.561% 19
Zimbabwe Zimbabwe 11.9 +0.986% 7

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.1519.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.1519.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))