Population ages 10-14, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 6.87 -0.263% 133
Afghanistan Afghanistan 12.9 -0.471% 18
Angola Angola 13 +0.287% 16
Albania Albania 6.43 +2.05% 151
Andorra Andorra 4.77 -4.88% 205
United Arab Emirates United Arab Emirates 4.15 +1.1% 214
Argentina Argentina 8.41 +0.181% 107
Armenia Armenia 7.69 -0.243% 120
American Samoa American Samoa 9.99 -0.254% 73
Antigua & Barbuda Antigua & Barbuda 6.78 -5.53% 137
Australia Australia 6.38 -0.876% 152
Austria Austria 4.97 +0.562% 203
Azerbaijan Azerbaijan 8.85 +0.166% 99
Burundi Burundi 14.4 +0.157% 2
Belgium Belgium 6.03 -0.936% 165
Benin Benin 12.4 +0.375% 30
Burkina Faso Burkina Faso 13.6 +0.103% 6
Bangladesh Bangladesh 9.91 -2.68% 77
Bulgaria Bulgaria 5.4 -0.731% 187
Bahrain Bahrain 5.16 +0.0877% 198
Bahamas Bahamas 7.08 -2.2% 128
Bosnia & Herzegovina Bosnia & Herzegovina 5.09 -2.42% 202
Belarus Belarus 6.92 +2.64% 132
Belize Belize 8.89 -1.38% 96
Bermuda Bermuda 5.17 -3.61% 197
Bolivia Bolivia 9.93 -1.05% 76
Brazil Brazil 7.04 -0.642% 130
Barbados Barbados 6.34 -3.06% 154
Brunei Brunei 6.87 +0.489% 134
Bhutan Bhutan 7.93 -1.59% 114
Botswana Botswana 9.89 -1.05% 78
Central African Republic Central African Republic 15.7 -0.398% 1
Canada Canada 5.46 -1.15% 183
Switzerland Switzerland 5.2 +0.124% 196
Chile Chile 6.44 -0.335% 149
China China 6.7 +1.03% 138
Côte d’Ivoire Côte d’Ivoire 12.4 -0.00305% 33
Cameroon Cameroon 12.3 -0.558% 34
Congo - Kinshasa Congo - Kinshasa 12.8 +0.354% 22
Congo - Brazzaville Congo - Brazzaville 13 -0.11% 14
Colombia Colombia 7.16 -2.47% 125
Comoros Comoros 11.6 -0.43% 50
Cape Verde Cape Verde 9.58 -0.756% 87
Costa Rica Costa Rica 7.14 -1.64% 126
Cuba Cuba 5.9 +0.499% 171
Curaçao Curaçao 6.43 +2.29% 150
Cayman Islands Cayman Islands 5.34 -3.09% 188
Cyprus Cyprus 5.29 +0.484% 192
Czechia Czechia 5.46 -1.54% 184
Germany Germany 4.72 +0.723% 207
Djibouti Djibouti 9.86 -1.53% 80
Dominica Dominica 6.48 +0.5% 143
Denmark Denmark 5.49 -2.86% 181
Dominican Republic Dominican Republic 9.21 -0.73% 89
Algeria Algeria 9.72 +2.12% 83
Ecuador Ecuador 8.98 -2.11% 94
Egypt Egypt 10.9 +1.57% 60
Eritrea Eritrea 12.8 -1.83% 23
Spain Spain 5.21 -2.57% 195
Estonia Estonia 6.02 -1.73% 166
Ethiopia Ethiopia 11.7 -1.87% 47
Finland Finland 5.83 -0.636% 172
Fiji Fiji 9.18 +0.12% 90
France France 6.34 -1.3% 155
Faroe Islands Faroe Islands 6.66 -0.673% 139
Micronesia (Federated States of) Micronesia (Federated States of) 11 -0.67% 57
Gabon Gabon 10.9 +0.825% 59
United Kingdom United Kingdom 6.46 -0.182% 147
Georgia Georgia 7.98 +2.33% 113
Ghana Ghana 11.6 +0.361% 49
Gibraltar Gibraltar 6.27 -0.823% 158
Guinea Guinea 12.6 -0.576% 27
Gambia Gambia 13 +0.149% 15
Guinea-Bissau Guinea-Bissau 12.5 -0.246% 28
Equatorial Guinea Equatorial Guinea 10.8 +0.53% 64
Greece Greece 5.32 -2.53% 190
Grenada Grenada 7.5 -1.17% 122
Greenland Greenland 6.47 +0.539% 145
Guatemala Guatemala 10.8 -0.72% 61
Guam Guam 8.48 +2.37% 106
Guyana Guyana 9.84 +0.355% 82
Hong Kong SAR China Hong Kong SAR China 4.56 +0.451% 209
Honduras Honduras 10.1 -1.56% 72
Croatia Croatia 5.51 -1.72% 180
Haiti Haiti 10.5 -0.883% 66
Hungary Hungary 5.12 -1.04% 201
Indonesia Indonesia 8.79 -0.49% 100
Isle of Man Isle of Man 5.72 -1.97% 175
India India 8.72 -1.85% 103
Ireland Ireland 7.12 -2.11% 127
Iran Iran 7.83 +1.61% 116
Iraq Iraq 12.6 +0.758% 26
Iceland Iceland 6.13 -3.33% 162
Israel Israel 9.05 +0.352% 91
Italy Italy 4.76 -1.97% 206
Jamaica Jamaica 7.06 -3.03% 129
Jordan Jordan 10.4 -0.667% 68
Japan Japan 4.54 -0.832% 211
Kazakhstan Kazakhstan 9.71 +0.428% 84
Kenya Kenya 12.3 -2.19% 35
Kyrgyzstan Kyrgyzstan 10.8 +0.917% 62
Cambodia Cambodia 9.84 -1.26% 81
Kiribati Kiribati 11.4 +0.666% 51
St. Kitts & Nevis St. Kitts & Nevis 6.03 +0.641% 164
South Korea South Korea 4.55 -0.632% 210
Kuwait Kuwait 5.53 -0.47% 179
Laos Laos 9.88 -0.807% 79
Lebanon Lebanon 10.3 -0.173% 70
Liberia Liberia 12.7 -0.931% 25
Libya Libya 9.65 -0.647% 85
St. Lucia St. Lucia 6.24 -3.92% 159
Liechtenstein Liechtenstein 5.12 -1.35% 200
Sri Lanka Sri Lanka 8.1 -0.927% 112
Lesotho Lesotho 11.8 +0.446% 46
Lithuania Lithuania 5.57 +0.447% 178
Luxembourg Luxembourg 5.45 +0.269% 186
Latvia Latvia 5.95 +1.05% 168
Macao SAR China Macao SAR China 5.48 +7.19% 182
Saint Martin (French part) Saint Martin (French part) 8.12 +1.89% 111
Morocco Morocco 8.99 -1.14% 93
Monaco Monaco 4.24 +1.27% 213
Moldova Moldova 7.78 +4.65% 119
Madagascar Madagascar 11.9 -1.15% 43
Maldives Maldives 6.48 -0.0574% 144
Mexico Mexico 9.03 -0.885% 92
Marshall Islands Marshall Islands 12.5 -0.99% 29
North Macedonia North Macedonia 6.28 +0.996% 157
Mali Mali 13.5 -0.179% 8
Malta Malta 4.4 +0.364% 212
Myanmar (Burma) Myanmar (Burma) 8.26 -0.71% 109
Montenegro Montenegro 6.82 -0.63% 135
Mongolia Mongolia 11.3 +4.15% 54
Northern Mariana Islands Northern Mariana Islands 8.24 -2.49% 110
Mozambique Mozambique 13.5 -0.32% 9
Mauritania Mauritania 13.2 -0.388% 12
Mauritius Mauritius 5.25 -3.51% 193
Malawi Malawi 13.2 -1.61% 11
Malaysia Malaysia 7.81 -0.209% 118
Namibia Namibia 11.1 +1.16% 55
New Caledonia New Caledonia 7.37 -1.04% 123
Niger Niger 13.5 -0.252% 7
Nigeria Nigeria 12.9 -0.294% 19
Nicaragua Nicaragua 9.97 -1.21% 74
Netherlands Netherlands 5.33 -1.73% 189
Norway Norway 5.95 -2.36% 169
Nepal Nepal 10.4 -0.235% 67
Nauru Nauru 13.2 +0.184% 13
New Zealand New Zealand 6.62 -1.56% 141
Oman Oman 6.19 +1.24% 160
Pakistan Pakistan 12 -0.615% 42
Panama Panama 8.67 -0.309% 104
Peru Peru 8.39 -1.9% 108
Philippines Philippines 10.3 -1.04% 69
Palau Palau 6.61 +1.14% 142
Papua New Guinea Papua New Guinea 10.8 -0.558% 63
Poland Poland 5.7 -1.17% 176
Puerto Rico Puerto Rico 5.3 -3.07% 191
North Korea North Korea 6.35 -0.179% 153
Portugal Portugal 4.82 -2.92% 204
Paraguay Paraguay 9.24 +0.235% 88
Palestinian Territories Palestinian Territories 12.2 +1.02% 37
French Polynesia French Polynesia 7.62 -2.27% 121
Qatar Qatar 3.31 -0.386% 216
Romania Romania 5.73 -1.73% 174
Russia Russia 7.02 +3.03% 131
Rwanda Rwanda 11.8 -0.791% 45
Saudi Arabia Saudi Arabia 6.64 -0.534% 140
Sudan Sudan 12.1 -0.82% 39
Senegal Senegal 12.4 -1.04% 32
Singapore Singapore 3.8 -3.99% 215
Solomon Islands Solomon Islands 11.8 +0.141% 44
Sierra Leone Sierra Leone 12.1 -1.12% 40
El Salvador El Salvador 9.59 -0.869% 86
San Marino San Marino 5.24 -1.67% 194
Somalia Somalia 12.7 +1.1% 24
Serbia Serbia 5.16 +0.299% 199
South Sudan South Sudan 14.3 -2.11% 3
São Tomé & Príncipe São Tomé & Príncipe 12.3 -0.694% 36
Suriname Suriname 8.86 -0.758% 98
Slovakia Slovakia 5.63 -0.628% 177
Slovenia Slovenia 5.45 -0.827% 185
Sweden Sweden 6.12 -0.227% 163
Eswatini Eswatini 11.1 -0.545% 56
Sint Maarten Sint Maarten 6.8 -3.43% 136
Seychelles Seychelles 5.96 -0.0306% 167
Syria Syria 11.3 -7.83% 52
Turks & Caicos Islands Turks & Caicos Islands 4.71 -2.24% 208
Chad Chad 13 -1.44% 17
Togo Togo 12.2 -0.806% 38
Thailand Thailand 5.94 -1.21% 170
Tajikistan Tajikistan 11.3 +1.8% 53
Turkmenistan Turkmenistan 10.2 +2.94% 71
Timor-Leste Timor-Leste 11 -0.633% 58
Tonga Tonga 13.6 +1.76% 5
Trinidad & Tobago Trinidad & Tobago 6.47 -0.652% 146
Tunisia Tunisia 8.87 +1.95% 97
Turkey Turkey 7.82 +0.522% 117
Tuvalu Tuvalu 10.7 +3.21% 65
Tanzania Tanzania 12.4 -0.0859% 31
Uganda Uganda 13.2 -0.87% 10
Ukraine Ukraine 6.46 -0.555% 148
Uruguay Uruguay 7.23 +0.315% 124
United States United States 6.29 -1.75% 156
Uzbekistan Uzbekistan 8.95 +0.242% 95
St. Vincent & Grenadines St. Vincent & Grenadines 7.84 +0.535% 115
Venezuela Venezuela 9.96 -1.15% 75
British Virgin Islands British Virgin Islands 5.81 -7.01% 173
U.S. Virgin Islands U.S. Virgin Islands 6.14 -0.151% 161
Vietnam Vietnam 8.77 +1.63% 101
Vanuatu Vanuatu 12 +0.888% 41
Samoa Samoa 12.8 +1.62% 21
Kosovo Kosovo 8.76 -0.639% 102
Yemen Yemen 11.6 -0.358% 48
South Africa South Africa 8.56 -2.16% 105
Zambia Zambia 12.8 -1.06% 20
Zimbabwe Zimbabwe 14.3 +0.0462% 4

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.1014.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.1014.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))