Population ages 10-14, female (% of female population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 5.92 -0.19% 153
Afghanistan Afghanistan 12.5 -0.309% 19
Angola Angola 12.7 +0.284% 16
Albania Albania 5.74 +1.81% 163
Andorra Andorra 4.94 -4.75% 191
United Arab Emirates United Arab Emirates 7.21 +1.27% 125
Argentina Argentina 7.83 +0.248% 117
Armenia Armenia 6.11 -0.243% 146
American Samoa American Samoa 9.92 -0.262% 69
Antigua & Barbuda Antigua & Barbuda 5.98 -5.5% 150
Australia Australia 5.95 -0.867% 152
Austria Austria 4.54 +0.541% 202
Azerbaijan Azerbaijan 7.66 +0.347% 119
Burundi Burundi 14.1 +0.127% 2
Belgium Belgium 5.6 -0.829% 168
Benin Benin 12.2 +0.461% 27
Burkina Faso Burkina Faso 13.1 +0.104% 6
Bangladesh Bangladesh 8.76 -2.79% 91
Bulgaria Bulgaria 4.8 -0.791% 195
Bahrain Bahrain 8.05 -0.128% 111
Bahamas Bahamas 6.34 -2.5% 142
Bosnia & Herzegovina Bosnia & Herzegovina 4.3 -2.19% 209
Belarus Belarus 5.69 +2.6% 164
Belize Belize 8.64 -1.52% 94
Bermuda Bermuda 4.72 -1.29% 200
Bolivia Bolivia 9.64 -1.08% 75
Brazil Brazil 6.55 -0.731% 137
Barbados Barbados 5.64 -2.73% 166
Brunei Brunei 7.18 +0.64% 126
Bhutan Bhutan 8.27 -1.6% 103
Botswana Botswana 9.69 -1.19% 74
Central African Republic Central African Republic 14.2 -0.347% 1
Canada Canada 5.16 -1.29% 182
Switzerland Switzerland 4.86 +0.245% 192
Chile Chile 6.13 -0.298% 145
China China 5.98 +1.14% 149
Côte d’Ivoire Côte d’Ivoire 12.3 +0.524% 24
Cameroon Cameroon 12.1 -0.69% 28
Congo - Kinshasa Congo - Kinshasa 12.6 +0.325% 18
Congo - Brazzaville Congo - Brazzaville 12.8 -0.201% 9
Colombia Colombia 6.69 -2.45% 132
Comoros Comoros 11.3 -0.0653% 48
Cape Verde Cape Verde 9.28 -0.379% 82
Costa Rica Costa Rica 6.67 -1.66% 133
Cuba Cuba 5.43 -0.0774% 172
Curaçao Curaçao 5.62 +2.08% 167
Cayman Islands Cayman Islands 5.21 -1.99% 180
Cyprus Cyprus 5.06 +0.583% 188
Czechia Czechia 5.06 -1.77% 189
Germany Germany 4.36 +0.786% 207
Djibouti Djibouti 9.51 -1.59% 78
Dominica Dominica 6.53 -1.18% 139
Denmark Denmark 5.16 -2.67% 181
Dominican Republic Dominican Republic 8.75 -0.72% 92
Algeria Algeria 9.7 +2.14% 73
Ecuador Ecuador 8.57 -2.14% 95
Egypt Egypt 10.6 +1.67% 60
Eritrea Eritrea 12.3 -1.8% 26
Spain Spain 4.73 -2.5% 199
Estonia Estonia 5.21 -1.53% 179
Ethiopia Ethiopia 11.4 -1.91% 47
Finland Finland 5.45 -0.732% 170
Fiji Fiji 8.98 -0.471% 87
France France 5.68 -1.11% 165
Faroe Islands Faroe Islands 6.54 -0.802% 138
Micronesia (Federated States of) Micronesia (Federated States of) 10.3 -1.46% 64
Gabon Gabon 11.2 +0.581% 51
United Kingdom United Kingdom 5.97 -0.133% 151
Georgia Georgia 6.57 +1.81% 136
Ghana Ghana 11.3 +0.326% 49
Gibraltar Gibraltar 5.84 -1.53% 158
Guinea Guinea 12 -0.453% 35
Gambia Gambia 12.7 +0.154% 14
Guinea-Bissau Guinea-Bissau 12 -0.241% 34
Equatorial Guinea Equatorial Guinea 11.8 +0.272% 37
Greece Greece 4.73 -2.71% 198
Grenada Grenada 7.24 -1.29% 124
Greenland Greenland 6.75 +0.459% 131
Guatemala Guatemala 10.4 -0.762% 63
Guam Guam 8.19 +1.8% 106
Guyana Guyana 9.06 +0.306% 85
Hong Kong SAR China Hong Kong SAR China 3.64 +0.824% 216
Honduras Honduras 9.72 -1.58% 72
Croatia Croatia 4.82 -2.09% 194
Haiti Haiti 10.1 -0.965% 65
Hungary Hungary 4.48 -0.999% 205
Indonesia Indonesia 8.42 -0.506% 101
Isle of Man Isle of Man 5.37 -2.51% 174
India India 8.47 -1.8% 100
Ireland Ireland 6.66 -2.23% 134
Iran Iran 7.63 +1.42% 120
Iraq Iraq 12.1 +0.848% 31
Iceland Iceland 6.18 -2.46% 144
Israel Israel 8.53 +0.197% 97
Italy Italy 4.29 -1.88% 211
Jamaica Jamaica 6.66 -3.12% 135
Jordan Jordan 10.7 -1.69% 58
Japan Japan 4.09 -0.887% 213
Kazakhstan Kazakhstan 8.85 +0.784% 90
Kenya Kenya 12 -2.32% 33
Kyrgyzstan Kyrgyzstan 9.97 +1.05% 67
Cambodia Cambodia 9.12 -0.97% 84
Kiribati Kiribati 10.8 -0.154% 54
St. Kitts & Nevis St. Kitts & Nevis 5.76 -0.287% 161
South Korea South Korea 4.3 -0.389% 210
Kuwait Kuwait 8.2 -0.868% 105
Laos Laos 9.63 -0.956% 76
Lebanon Lebanon 9.3 +0.165% 81
Liberia Liberia 12.4 -0.903% 21
Libya Libya 9.46 -0.609% 79
St. Lucia St. Lucia 5.91 -3.27% 155
Liechtenstein Liechtenstein 4.5 -0.972% 203
Sri Lanka Sri Lanka 7.34 -1.3% 122
Lesotho Lesotho 11.1 +0.469% 52
Lithuania Lithuania 4.76 +0.769% 196
Luxembourg Luxembourg 5.24 +0.34% 178
Latvia Latvia 4.83 +0.797% 193
Macao SAR China Macao SAR China 4.35 +4.64% 208
Saint Martin (French part) Saint Martin (French part) 7.05 +0.917% 128
Morocco Morocco 8.65 -1.28% 93
Monaco Monaco 4 +2.02% 214
Moldova Moldova 6.43 +2.71% 141
Madagascar Madagascar 11.7 -1.23% 42
Maldives Maldives 8.93 -0.628% 88
Mexico Mexico 8.21 -0.949% 104
Marshall Islands Marshall Islands 12.3 +0.115% 25
North Macedonia North Macedonia 5.77 +1.12% 159
Mali Mali 13.4 -0.173% 5
Malta Malta 4.44 -0.66% 206
Myanmar (Burma) Myanmar (Burma) 7.79 -0.816% 118
Montenegro Montenegro 5.89 -1.09% 156
Mongolia Mongolia 10.5 +3.89% 61
Northern Mariana Islands Northern Mariana Islands 8.49 -2.22% 99
Mozambique Mozambique 12.7 -0.255% 15
Mauritania Mauritania 12.3 -0.348% 22
Mauritius Mauritius 5.41 -4.23% 173
Malawi Malawi 12.7 -1.73% 13
Malaysia Malaysia 7.91 -0.347% 113
Namibia Namibia 10.8 +1.01% 56
New Caledonia New Caledonia 7 -0.551% 129
Niger Niger 13.5 -0.228% 4
Nigeria Nigeria 12.7 -0.173% 10
Nicaragua Nicaragua 9.38 -1.19% 80
Netherlands Netherlands 5.01 -1.62% 190
Norway Norway 5.74 -2.01% 162
Nepal Nepal 8.99 -1.41% 86
Nauru Nauru 12.7 +0.861% 12
New Zealand New Zealand 6.2 -1.42% 143
Oman Oman 9.82 +1.87% 70
Pakistan Pakistan 11.8 -0.713% 39
Panama Panama 8.28 -0.454% 102
Peru Peru 8.02 -1.97% 112
Philippines Philippines 9.96 -1.14% 68
Palau Palau 6.92 -2.33% 130
Papua New Guinea Papua New Guinea 10.5 -0.421% 62
Poland Poland 5.08 -1.26% 187
Puerto Rico Puerto Rico 4.48 -2.87% 204
North Korea North Korea 5.91 -0.0513% 154
Portugal Portugal 4.2 -3.15% 212
Paraguay Paraguay 8.89 +0.156% 89
Palestinian Territories Palestinian Territories 11.8 +0.203% 40
French Polynesia French Polynesia 7.26 -2.85% 123
Qatar Qatar 7.89 -0.315% 114
Romania Romania 5.15 -1.72% 183
Russia Russia 5.76 +2.78% 160
Rwanda Rwanda 11.2 -0.696% 50
Saudi Arabia Saudi Arabia 9.78 -0.697% 71
Sudan Sudan 11.7 -0.897% 41
Senegal Senegal 11.8 -1.5% 38
Singapore Singapore 3.83 -2.97% 215
Solomon Islands Solomon Islands 11.6 +0.411% 43
Sierra Leone Sierra Leone 11.9 -1.05% 36
El Salvador El Salvador 8.13 -0.674% 107
San Marino San Marino 4.75 -1.95% 197
Somalia Somalia 12.5 +1.15% 20
Serbia Serbia 4.62 +0.215% 201
South Sudan South Sudan 13.6 -2.16% 3
São Tomé & Príncipe São Tomé & Príncipe 12.1 -0.929% 29
Suriname Suriname 8.56 -0.9% 96
Slovakia Slovakia 5.13 -0.357% 185
Slovenia Slovenia 5.24 -0.868% 177
Sweden Sweden 5.86 -0.167% 157
Eswatini Eswatini 10.6 -0.428% 59
Sint Maarten Sint Maarten 5.53 -3.87% 169
Seychelles Seychelles 7.1 -1.19% 127
Syria Syria 10.8 -7.74% 57
Turks & Caicos Islands Turks & Caicos Islands 5.44 -3.7% 171
Chad Chad 12.7 -1.36% 11
Togo Togo 12.1 -0.779% 30
Thailand Thailand 5.32 -1.42% 175
Tajikistan Tajikistan 11.1 +2.26% 53
Turkmenistan Turkmenistan 9.56 +3.26% 77
Timor-Leste Timor-Leste 10.8 -0.794% 55
Tonga Tonga 11.4 +1.34% 45
Trinidad & Tobago Trinidad & Tobago 6.1 -0.686% 147
Tunisia Tunisia 8.1 +2.1% 108
Turkey Turkey 7.52 +0.488% 121
Tuvalu Tuvalu 10 +4.67% 66
Tanzania Tanzania 12 -0.139% 32
Uganda Uganda 12.9 -0.963% 8
Ukraine Ukraine 5.28 -0.377% 176
Uruguay Uruguay 6.51 +0.306% 140
United States United States 5.99 -1.7% 148
Uzbekistan Uzbekistan 8.52 +0.0349% 98
St. Vincent & Grenadines St. Vincent & Grenadines 7.88 +0.745% 115
Venezuela Venezuela 9.22 -1.39% 83
British Virgin Islands British Virgin Islands 5.15 -6.18% 184
U.S. Virgin Islands U.S. Virgin Islands 5.1 -2.96% 186
Vietnam Vietnam 8.09 +1.39% 109
Vanuatu Vanuatu 11.5 +0.841% 44
Samoa Samoa 12.3 +1.52% 23
Kosovo Kosovo 7.83 -2.5% 116
Yemen Yemen 11.4 -0.31% 46
South Africa South Africa 8.06 -2% 110
Zambia Zambia 12.6 -1.07% 17
Zimbabwe Zimbabwe 12.9 +0.206% 7

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.1014.FE.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.1014.FE.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))