Population ages 05-09, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 6.11 -4.01% 147
Afghanistan Afghanistan 14.5 -0.935% 14
Angola Angola 15 -0.61% 9
Albania Albania 6 -4.05% 152
Andorra Andorra 4.01 -3.89% 212
United Arab Emirates United Arab Emirates 4.41 -3.04% 207
Argentina Argentina 8.05 -3.32% 109
Armenia Armenia 7.21 -3.27% 119
American Samoa American Samoa 9.16 -1.52% 88
Antigua & Barbuda Antigua & Barbuda 5.96 -1.94% 155
Australia Australia 6.14 -1.88% 145
Austria Austria 5.15 +0.0797% 189
Azerbaijan Azerbaijan 7.74 -4.56% 111
Burundi Burundi 15.1 -2.72% 8
Belgium Belgium 5.56 -1.72% 169
Benin Benin 14.2 -0.939% 15
Burkina Faso Burkina Faso 14.5 -2.27% 12
Bangladesh Bangladesh 9.46 -1.31% 84
Bulgaria Bulgaria 5.14 -0.658% 190
Bahrain Bahrain 5.35 -2.73% 180
Bahamas Bahamas 6.14 -3.6% 146
Bosnia & Herzegovina Bosnia & Herzegovina 4.73 +0.309% 200
Belarus Belarus 6.52 -4.66% 135
Belize Belize 9.44 -1.02% 85
Bermuda Bermuda 4.72 -1.59% 202
Bolivia Bolivia 10.1 -1.27% 76
Brazil Brazil 6.94 -1.04% 123
Barbados Barbados 6.04 -0.62% 151
Brunei Brunei 6.9 -1.84% 124
Bhutan Bhutan 6.48 -6.14% 136
Botswana Botswana 10.6 +0.059% 67
Central African Republic Central African Republic 16.3 -2.77% 1
Canada Canada 5.23 -1.58% 185
Switzerland Switzerland 5.26 -0.282% 181
Chile Chile 6.08 -2.6% 150
China China 6.28 -3.76% 140
Côte d’Ivoire Côte d’Ivoire 13.8 -1.53% 21
Cameroon Cameroon 14.1 -0.0763% 16
Congo - Kinshasa Congo - Kinshasa 15.4 +0.0944% 4
Congo - Brazzaville Congo - Brazzaville 13.5 -1.92% 27
Colombia Colombia 6.87 -1.08% 125
Comoros Comoros 12.5 -0.717% 45
Cape Verde Cape Verde 9.35 -1.03% 87
Costa Rica Costa Rica 6.84 -1.83% 126
Cuba Cuba 5.45 -1.8% 175
Curaçao Curaçao 5.5 -5.76% 173
Cayman Islands Cayman Islands 5.08 -0.641% 193
Cyprus Cyprus 5.53 +0.258% 170
Czechia Czechia 5.52 +0.892% 171
Germany Germany 5.03 +1.08% 195
Djibouti Djibouti 9.86 -1.49% 81
Dominica Dominica 5.93 -2.2% 156
Denmark Denmark 5.43 +1.06% 176
Dominican Republic Dominican Republic 9.13 -1.09% 89
Algeria Algeria 10.7 -1.02% 66
Ecuador Ecuador 8.29 -1.62% 103
Egypt Egypt 11.3 -3.72% 62
Eritrea Eritrea 12.7 -2.07% 42
Spain Spain 4.56 -3.08% 204
Estonia Estonia 5.88 +0.873% 158
Ethiopia Ethiopia 13.1 +0.394% 33
Finland Finland 4.99 -4.11% 196
Fiji Fiji 9.47 -1.09% 83
France France 5.77 -2.37% 163
Faroe Islands Faroe Islands 6.66 -1.04% 130
Micronesia (Federated States of) Micronesia (Federated States of) 10.9 -0.834% 65
Gabon Gabon 12.2 -0.0427% 49
United Kingdom United Kingdom 6.09 -1.97% 149
Georgia Georgia 8.27 -1.96% 105
Ghana Ghana 12.2 -1.89% 51
Gibraltar Gibraltar 5.88 -2.96% 159
Guinea Guinea 13.9 -0.76% 18
Gambia Gambia 13.5 -2.53% 26
Guinea-Bissau Guinea-Bissau 13.2 -1.97% 31
Equatorial Guinea Equatorial Guinea 12 -0.624% 55
Greece Greece 4.72 -2.04% 201
Grenada Grenada 6.3 -3.52% 139
Greenland Greenland 6.95 +1.95% 122
Guatemala Guatemala 11.1 -1.87% 64
Guam Guam 9.1 -0.524% 90
Guyana Guyana 10.3 -0.306% 74
Hong Kong SAR China Hong Kong SAR China 3.98 -2.68% 213
Honduras Honduras 10.3 -0.86% 72
Croatia Croatia 4.78 -1.64% 198
Haiti Haiti 10.6 -1.09% 68
Hungary Hungary 5.25 +0.654% 182
Indonesia Indonesia 8.32 -2.2% 102
Isle of Man Isle of Man 4.7 -4.31% 203
India India 8.28 -1.66% 104
Ireland Ireland 6.4 -2.19% 137
Iran Iran 8.24 -2.89% 106
Iraq Iraq 12.3 -3.7% 47
Iceland Iceland 5.72 -0.207% 165
Israel Israel 9.63 -0.652% 82
Italy Italy 4.16 -2.63% 208
Jamaica Jamaica 6.27 -2.2% 141
Jordan Jordan 10 -2.37% 77
Japan Japan 4.09 -2.25% 211
Kazakhstan Kazakhstan 10.3 -0.292% 73
Kenya Kenya 12.2 -1.73% 48
Kyrgyzstan Kyrgyzstan 11.7 +0.0901% 58
Cambodia Cambodia 10.5 +0.0703% 69
Kiribati Kiribati 12.1 -0.408% 53
St. Kitts & Nevis St. Kitts & Nevis 6.61 -0.369% 132
South Korea South Korea 3.76 -6% 216
Kuwait Kuwait 5.25 -3.56% 183
Laos Laos 10.4 -0.746% 71
Lebanon Lebanon 9.08 -5.5% 91
Liberia Liberia 13.2 -1.57% 30
Libya Libya 9.38 -2.36% 86
St. Lucia St. Lucia 5.98 -0.583% 153
Liechtenstein Liechtenstein 5.1 -1.36% 192
Sri Lanka Sri Lanka 7.7 -1.92% 112
Lesotho Lesotho 12.2 -1.66% 50
Lithuania Lithuania 5.76 -0.177% 164
Luxembourg Luxembourg 5.37 -1.43% 177
Latvia Latvia 6.35 -1.49% 138
Macao SAR China Macao SAR China 5.79 -3% 162
Saint Martin (French part) Saint Martin (French part) 7.52 +0.843% 114
Morocco Morocco 8.69 -1.49% 96
Monaco Monaco 4.82 +4.51% 197
Moldova Moldova 8.01 -2.83% 110
Madagascar Madagascar 13.1 -0.246% 34
Maldives Maldives 5.62 -3.61% 168
Mexico Mexico 8.49 -2.31% 99
Marshall Islands Marshall Islands 11.3 +1.35% 61
North Macedonia North Macedonia 6.09 -1.65% 148
Mali Mali 15.3 -0.992% 5
Malta Malta 4.52 -0.883% 206
Myanmar (Burma) Myanmar (Burma) 8.46 -0.414% 100
Montenegro Montenegro 6.54 -1.41% 134
Mongolia Mongolia 11.8 -3.5% 56
Northern Mariana Islands Northern Mariana Islands 7 -2.72% 120
Mozambique Mozambique 15.2 -0.654% 6
Mauritania Mauritania 14.7 -0.8% 10
Mauritius Mauritius 4.74 -1.17% 199
Malawi Malawi 13.7 -1.81% 24
Malaysia Malaysia 7.51 -3.59% 115
Namibia Namibia 12.9 -0.0197% 37
New Caledonia New Caledonia 7.24 -0.765% 118
Niger Niger 15.4 -1.19% 3
Nigeria Nigeria 13.7 -1.98% 23
Nicaragua Nicaragua 9.93 -1.68% 80
Netherlands Netherlands 5.11 -0.758% 191
Norway Norway 5.52 -1.98% 172
Nepal Nepal 10.2 -1.02% 75
Nauru Nauru 12.7 -2.83% 40
New Zealand New Zealand 6.2 -1.97% 143
Oman Oman 7.43 -2.75% 116
Pakistan Pakistan 12.2 -1.18% 52
Panama Panama 8.77 -1.78% 95
Peru Peru 8.1 -1.47% 108
Philippines Philippines 9.97 -1.92% 78
Palau Palau 5.85 -4.45% 161
Papua New Guinea Papua New Guinea 11.3 -0.947% 63
Poland Poland 5.36 -0.28% 178
Puerto Rico Puerto Rico 4.14 -4.55% 209
North Korea North Korea 6.63 +0.24% 131
Portugal Portugal 4.54 +1.12% 205
Paraguay Paraguay 9.96 -0.415% 79
Palestinian Territories Palestinian Territories 13.4 -0.658% 28
French Polynesia French Polynesia 6.57 -4.08% 133
Qatar Qatar 3.86 +0.482% 214
Romania Romania 5.69 +0.511% 166
Russia Russia 6.83 -3.51% 128
Rwanda Rwanda 12.9 -0.849% 35
Saudi Arabia Saudi Arabia 6.84 -1.94% 127
Sudan Sudan 13.7 +0.506% 22
Senegal Senegal 12.9 -1.64% 36
Singapore Singapore 3.84 -0.064% 215
Solomon Islands Solomon Islands 12.6 -1.85% 43
Sierra Leone Sierra Leone 12.7 -0.991% 41
El Salvador El Salvador 8.87 -2.97% 93
San Marino San Marino 4.1 -5.03% 210
Somalia Somalia 15.8 -0.335% 2
Serbia Serbia 5.15 +0.625% 188
South Sudan South Sudan 12.4 -5.09% 46
São Tomé & Príncipe São Tomé & Príncipe 12.6 -2.23% 44
Suriname Suriname 8.68 -1.78% 97
Slovakia Slovakia 5.68 +0.727% 167
Slovenia Slovenia 5.05 -1.28% 194
Sweden Sweden 5.96 -0.912% 154
Eswatini Eswatini 11.4 -0.637% 60
Sint Maarten Sint Maarten 5.36 -5.51% 179
Seychelles Seychelles 6.21 -0.884% 142
Syria Syria 8.34 -6.49% 101
Turks & Caicos Islands Turks & Caicos Islands 5.46 +3.05% 174
Chad Chad 15.2 -1.97% 7
Togo Togo 13.2 -0.712% 32
Thailand Thailand 5.18 -3.19% 187
Tajikistan Tajikistan 12.9 -0.957% 38
Turkmenistan Turkmenistan 11.5 -1.04% 59
Timor-Leste Timor-Leste 12 -0.272% 54
Tonga Tonga 12.8 -2.45% 39
Trinidad & Tobago Trinidad & Tobago 6.18 -1.43% 144
Tunisia Tunisia 8.83 -2.67% 94
Turkey Turkey 7.6 -2.11% 113
Tuvalu Tuvalu 11.8 +1.57% 57
Tanzania Tanzania 14.5 -0.117% 13
Uganda Uganda 14.6 -0.586% 11
Ukraine Ukraine 5.24 -5.15% 184
Uruguay Uruguay 6.78 -3.99% 129
United States United States 5.93 -1.82% 157
Uzbekistan Uzbekistan 10.4 +0.738% 70
St. Vincent & Grenadines St. Vincent & Grenadines 7.28 -2.92% 117
Venezuela Venezuela 8.94 -3.9% 92
British Virgin Islands British Virgin Islands 5.22 -5.18% 186
U.S. Virgin Islands U.S. Virgin Islands 5.86 +0.112% 160
Vietnam Vietnam 8.21 -3.88% 107
Vanuatu Vanuatu 13.3 -0.903% 29
Samoa Samoa 13.6 -0.165% 25
Kosovo Kosovo 6.96 -5.27% 121
Yemen Yemen 13.9 +0.324% 19
South Africa South Africa 8.6 +0.631% 98
Zambia Zambia 13.8 -1.33% 20
Zimbabwe Zimbabwe 14 -2.81% 17

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.0509.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.0509.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))