Population ages 00-04, male (% of male population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 5.19 -1.88% 164
Afghanistan Afghanistan 16.1 -1.06% 12
Angola Angola 17.1 -0.96% 8
Albania Albania 5.32 -1.67% 155
Andorra Andorra 3.12 +2.38% 215
United Arab Emirates United Arab Emirates 4.17 -2.74% 201
Argentina Argentina 5.88 -5.71% 140
Armenia Armenia 6.6 -1.55% 118
American Samoa American Samoa 7.8 -3.7% 101
Antigua & Barbuda Antigua & Barbuda 6.24 +1.09% 128
Australia Australia 5.95 -0.449% 136
Austria Austria 4.74 -2.38% 181
Azerbaijan Azerbaijan 6.83 -3.19% 112
Burundi Burundi 15.8 -1.67% 14
Belgium Belgium 5 -3.11% 171
Benin Benin 15.4 -1.34% 18
Burkina Faso Burkina Faso 14.5 -2% 25
Bangladesh Bangladesh 10 -0.0988% 77
Bulgaria Bulgaria 4.83 +0.286% 180
Bahrain Bahrain 4.87 -1.61% 178
Bahamas Bahamas 5.76 -0.513% 144
Bosnia & Herzegovina Bosnia & Herzegovina 4.35 -2.27% 196
Belarus Belarus 4.55 -5.75% 190
Belize Belize 8.63 -2.08% 89
Bermuda Bermuda 4.32 -1.18% 197
Bolivia Bolivia 10.3 -1.17% 73
Brazil Brazil 6.41 -2.34% 123
Barbados Barbados 5.89 -0.579% 139
Brunei Brunei 6.59 -1.41% 119
Bhutan Bhutan 5.87 +0.0355% 142
Botswana Botswana 11.9 -0.176% 55
Central African Republic Central African Republic 19.5 +1.44% 1
Canada Canada 4.89 -0.978% 176
Switzerland Switzerland 4.99 -1.29% 172
Chile Chile 4.87 -4.8% 179
China China 3.78 -10.5% 206
Côte d’Ivoire Côte d’Ivoire 14.4 -1.38% 26
Cameroon Cameroon 15.5 -1.45% 16
Congo - Kinshasa Congo - Kinshasa 18.4 -0.577% 4
Congo - Brazzaville Congo - Brazzaville 14.3 -1.07% 27
Colombia Colombia 6.94 -1.16% 109
Comoros Comoros 13.4 -1.19% 40
Cape Verde Cape Verde 6.86 -9.11% 111
Costa Rica Costa Rica 5.45 -5.22% 151
Cuba Cuba 4.66 -2.91% 185
Curaçao Curaçao 4.07 -3.09% 203
Cayman Islands Cayman Islands 5.88 +1.5% 141
Cyprus Cyprus 5.61 -0.417% 148
Czechia Czechia 5.01 -4.58% 169
Germany Germany 4.71 -2.02% 182
Djibouti Djibouti 10.1 -1.01% 76
Dominica Dominica 5.52 -0.71% 149
Denmark Denmark 5.29 -1.4% 158
Dominican Republic Dominican Republic 8.9 -1.89% 86
Algeria Algeria 9.9 -3.85% 80
Ecuador Ecuador 7.77 -2.84% 102
Egypt Egypt 10.3 -1.69% 72
Eritrea Eritrea 13.6 -0.412% 37
Spain Spain 3.78 -1.94% 207
Estonia Estonia 5 -5.72% 170
Ethiopia Ethiopia 15 -0.873% 20
Finland Finland 4.32 -1.31% 198
Fiji Fiji 9.14 -1.52% 85
France France 5.32 -1.47% 157
Faroe Islands Faroe Islands 6.47 -1.14% 122
Micronesia (Federated States of) Micronesia (Federated States of) 11.1 -0.644% 61
Gabon Gabon 13 -1.7% 44
United Kingdom United Kingdom 5.35 -1.9% 152
Georgia Georgia 6.76 -3.94% 114
Ghana Ghana 12.5 -1.28% 51
Gibraltar Gibraltar 6.12 +1.49% 131
Guinea Guinea 15.4 -1.29% 17
Gambia Gambia 14.3 -1.11% 29
Guinea-Bissau Guinea-Bissau 14 -1.28% 31
Equatorial Guinea Equatorial Guinea 12.9 -0.957% 45
Greece Greece 3.99 -3.37% 204
Grenada Grenada 5.97 -1.31% 135
Greenland Greenland 6.9 -2.19% 110
Guatemala Guatemala 10.3 -2.59% 70
Guam Guam 8.89 -1.65% 87
Guyana Guyana 10.3 -1.52% 71
Hong Kong SAR China Hong Kong SAR China 3.34 -2.98% 212
Honduras Honduras 10.7 -1.19% 66
Croatia Croatia 4.57 -1.1% 189
Haiti Haiti 10.7 -1.54% 67
Hungary Hungary 5.04 -1.45% 167
Indonesia Indonesia 8.02 -1.35% 99
Isle of Man Isle of Man 4.21 +0.155% 200
India India 7.87 -1.83% 100
Ireland Ireland 5.67 -3.04% 145
Iran Iran 6.63 -4.04% 116
Iraq Iraq 12.4 -1.27% 52
Iceland Iceland 5.99 -1.1% 134
Israel Israel 9.56 -1.91% 83
Italy Italy 3.59 -1.74% 210
Jamaica Jamaica 5.92 -1.24% 137
Jordan Jordan 9.9 -1.72% 81
Japan Japan 3.4 -2.63% 211
Kazakhstan Kazakhstan 10.8 -1.71% 65
Kenya Kenya 12.8 -0.891% 49
Kyrgyzstan Kyrgyzstan 11.1 -3.94% 60
Cambodia Cambodia 10.7 -2.12% 68
Kiribati Kiribati 12.8 -1.64% 48
St. Kitts & Nevis St. Kitts & Nevis 6.33 -1.39% 124
South Korea South Korea 2.55 -5.53% 216
Kuwait Kuwait 4.46 -2.15% 194
Laos Laos 10.4 -1.82% 69
Lebanon Lebanon 8.25 -0.37% 94
Liberia Liberia 14.1 -1.07% 30
Libya Libya 8.64 -2.95% 88
St. Lucia St. Lucia 5.78 -1.07% 143
Liechtenstein Liechtenstein 4.9 +0.0505% 175
Sri Lanka Sri Lanka 7.4 -1.37% 106
Lesotho Lesotho 11.7 -2.24% 58
Lithuania Lithuania 4.65 -4.67% 186
Luxembourg Luxembourg 5.2 +0.305% 163
Latvia Latvia 4.88 -5.34% 177
Macao SAR China Macao SAR China 4.23 -7.2% 199
Saint Martin (French part) Saint Martin (French part) 7.49 +2% 105
Morocco Morocco 8.37 -2% 91
Monaco Monaco 4.9 +1.17% 174
Moldova Moldova 6.25 -4.11% 126
Madagascar Madagascar 14.7 -0.97% 23
Maldives Maldives 4.71 -3.9% 183
Mexico Mexico 8.2 -1.69% 96
Marshall Islands Marshall Islands 10.8 -2.67% 64
North Macedonia North Macedonia 5.34 -3.62% 153
Mali Mali 17.4 -0.797% 6
Malta Malta 4.08 -2.2% 202
Myanmar (Burma) Myanmar (Burma) 8.34 -1.39% 93
Montenegro Montenegro 6.17 -1.32% 129
Mongolia Mongolia 10.1 -4.53% 75
Northern Mariana Islands Northern Mariana Islands 6.8 -2.08% 113
Mozambique Mozambique 17.3 -0.951% 7
Mauritania Mauritania 16.3 -1.14% 11
Mauritius Mauritius 4.67 -0.183% 184
Malawi Malawi 14.8 -0.98% 21
Malaysia Malaysia 6.15 -3.01% 130
Namibia Namibia 13.7 -2.98% 35
New Caledonia New Caledonia 7.37 -1.04% 107
Niger Niger 17.7 -0.835% 5
Nigeria Nigeria 14.6 -1.2% 24
Nicaragua Nicaragua 9.77 -1.72% 82
Netherlands Netherlands 5.04 -0.485% 166
Norway Norway 5.02 -1.51% 168
Nepal Nepal 9.94 -0.879% 79
Nauru Nauru 12.3 -0.7% 54
New Zealand New Zealand 5.9 -0.762% 138
Oman Oman 6.62 -4.82% 117
Pakistan Pakistan 12.8 -0.741% 47
Panama Panama 8.08 -2.38% 97
Peru Peru 8.04 -1.31% 98
Philippines Philippines 8.21 -4.82% 95
Palau Palau 5.26 -0.537% 161
Papua New Guinea Papua New Guinea 11.7 -1.34% 56
Poland Poland 4.63 -4.48% 187
Puerto Rico Puerto Rico 3.24 -1.41% 214
North Korea North Korea 6.68 -0.775% 115
Portugal Portugal 4.4 -0.0255% 195
Paraguay Paraguay 9.95 -1.65% 78
Palestinian Territories Palestinian Territories 13.4 -2.06% 39
French Polynesia French Polynesia 5.32 -3.09% 156
Qatar Qatar 3.65 -2.06% 209
Romania Romania 5.18 -1.75% 165
Russia Russia 5.28 -3.69% 159
Rwanda Rwanda 13.8 -1.31% 33
Saudi Arabia Saudi Arabia 6.58 -0.473% 120
Sudan Sudan 15.5 -0.871% 15
Senegal Senegal 13.6 -1.12% 36
Singapore Singapore 3.94 +1.2% 205
Solomon Islands Solomon Islands 12.9 -1.4% 46
Sierra Leone Sierra Leone 13.7 -1.33% 34
El Salvador El Salvador 8.36 -1.2% 92
San Marino San Marino 3.32 -3.95% 213
Somalia Somalia 18.7 -0.909% 2
Serbia Serbia 4.92 -0.937% 173
South Sudan South Sudan 13.3 +0.0442% 41
São Tomé & Príncipe São Tomé & Príncipe 13.5 -0.198% 38
Suriname Suriname 8.57 -0.775% 90
Slovakia Slovakia 5.23 -2.96% 162
Slovenia Slovenia 4.54 -2.15% 191
Sweden Sweden 5.27 -3.77% 160
Eswatini Eswatini 11.7 -1.4% 57
Sint Maarten Sint Maarten 4.59 +0.788% 188
Seychelles Seychelles 6.32 -1.47% 125
Syria Syria 10.2 +3.27% 74
Turks & Caicos Islands Turks & Caicos Islands 5.61 -1.47% 147
Chad Chad 18.4 -1.03% 3
Togo Togo 14.3 -1.19% 28
Thailand Thailand 4.47 -2.13% 193
Tajikistan Tajikistan 13.1 -2.17% 42
Turkmenistan Turkmenistan 11.1 -3.16% 62
Timor-Leste Timor-Leste 11 -3.86% 63
Tonga Tonga 12.4 +0.0188% 53
Trinidad & Tobago Trinidad & Tobago 5.64 -2.36% 146
Tunisia Tunisia 7.32 -4.53% 108
Turkey Turkey 6.47 -3.84% 121
Tuvalu Tuvalu 11.4 -1.76% 59
Tanzania Tanzania 16.4 -0.951% 10
Uganda Uganda 16.4 -1.15% 9
Ukraine Ukraine 3.68 -3.99% 208
Uruguay Uruguay 5.33 -2.83% 154
United States United States 5.47 -1.02% 150
Uzbekistan Uzbekistan 12.6 +1.17% 50
St. Vincent & Grenadines St. Vincent & Grenadines 6.1 -2.5% 132
Venezuela Venezuela 7.63 -2% 103
British Virgin Islands British Virgin Islands 4.5 -0.363% 192
U.S. Virgin Islands U.S. Virgin Islands 6.03 +1.09% 133
Vietnam Vietnam 7.5 -2.17% 104
Vanuatu Vanuatu 13.8 -1.91% 32
Samoa Samoa 13 -3.19% 43
Kosovo Kosovo 6.24 -1.96% 127
Yemen Yemen 16.1 -0.661% 13
South Africa South Africa 9.56 -0.699% 84
Zambia Zambia 15.2 -1.19% 19
Zimbabwe Zimbabwe 14.8 -0.747% 22

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.0004.MA.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.0004.MA.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))