Population ages 00-04, female (% of female population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 4.47 -1.84% 178
Afghanistan Afghanistan 15.7 -0.966% 11
Angola Angola 16.5 -0.971% 7
Albania Albania 4.84 -1.47% 164
Andorra Andorra 3.02 +3.36% 213
United Arab Emirates United Arab Emirates 7.22 -1.65% 109
Argentina Argentina 5.52 -5.65% 142
Armenia Armenia 5.35 -1.61% 148
American Samoa American Samoa 7.63 -6.14% 102
Antigua & Barbuda Antigua & Barbuda 5.5 +1.1% 143
Australia Australia 5.55 -0.303% 139
Austria Austria 4.37 -2.41% 181
Azerbaijan Azerbaijan 5.86 -3.02% 131
Burundi Burundi 15.3 -1.69% 13
Belgium Belgium 4.65 -3.21% 173
Benin Benin 15 -1.34% 16
Burkina Faso Burkina Faso 14 -1.91% 28
Bangladesh Bangladesh 9.24 -0.0486% 82
Bulgaria Bulgaria 4.28 +0.239% 185
Bahrain Bahrain 7.69 -1.57% 97
Bahamas Bahamas 5.13 -0.657% 155
Bosnia & Herzegovina Bosnia & Herzegovina 3.7 -2.09% 203
Belarus Belarus 3.76 -5.82% 202
Belize Belize 8.38 -2.17% 92
Bermuda Bermuda 3.99 -1.42% 196
Bolivia Bolivia 9.93 -1.21% 71
Brazil Brazil 5.95 -2.43% 129
Barbados Barbados 5.26 -0.564% 153
Brunei Brunei 6.93 -1.46% 112
Bhutan Bhutan 6.45 -0.201% 122
Botswana Botswana 11.6 -0.593% 53
Central African Republic Central African Republic 17.7 +1.8% 4
Canada Canada 4.59 -0.982% 176
Switzerland Switzerland 4.68 -1.19% 171
Chile Chile 4.62 -4.86% 174
China China 3.54 -10% 204
Côte d’Ivoire Côte d’Ivoire 14.7 -1.6% 19
Cameroon Cameroon 15.1 -1.46% 15
Congo - Kinshasa Congo - Kinshasa 17.9 -0.614% 3
Congo - Brazzaville Congo - Brazzaville 14 -1.09% 27
Colombia Colombia 6.49 -1.18% 121
Comoros Comoros 13.2 -1.23% 36
Cape Verde Cape Verde 6.79 -8.63% 116
Costa Rica Costa Rica 5.1 -5.3% 156
Cuba Cuba 4.23 -2.93% 188
Curaçao Curaçao 3.52 -3.45% 205
Cayman Islands Cayman Islands 5.75 +0.921% 134
Cyprus Cyprus 5.36 -0.414% 147
Czechia Czechia 4.65 -4.77% 172
Germany Germany 4.35 -2.01% 182
Djibouti Djibouti 9.61 -1.06% 78
Dominica Dominica 5.36 -1.26% 146
Denmark Denmark 4.96 -1.3% 161
Dominican Republic Dominican Republic 8.48 -1.95% 89
Algeria Algeria 9.89 -3.92% 72
Ecuador Ecuador 7.4 -2.88% 106
Egypt Egypt 9.95 -1.75% 70
Eritrea Eritrea 12.9 -0.354% 40
Spain Spain 3.44 -2% 207
Estonia Estonia 4.28 -5.92% 186
Ethiopia Ethiopia 14.4 -0.913% 23
Finland Finland 4.03 -1.32% 193
Fiji Fiji 8.46 -1.75% 91
France France 4.78 -1.33% 165
Faroe Islands Faroe Islands 6.43 -2.16% 123
Micronesia (Federated States of) Micronesia (Federated States of) 10.3 -0.727% 63
Gabon Gabon 13.2 -1.87% 35
United Kingdom United Kingdom 4.92 -1.82% 162
Georgia Georgia 5.54 -3.83% 140
Ghana Ghana 12.1 -1.33% 49
Gibraltar Gibraltar 5.73 +1.65% 135
Guinea Guinea 14.7 -1.14% 20
Gambia Gambia 13.8 -1.1% 29
Guinea-Bissau Guinea-Bissau 13.3 -1.2% 33
Equatorial Guinea Equatorial Guinea 14.1 -1.24% 25
Greece Greece 3.52 -3.68% 206
Grenada Grenada 5.78 -1.44% 132
Greenland Greenland 7.29 -2.34% 107
Guatemala Guatemala 9.85 -2.64% 73
Guam Guam 8.55 -1.86% 88
Guyana Guyana 9.48 -1.63% 81
Hong Kong SAR China Hong Kong SAR China 2.56 -4.04% 215
Honduras Honduras 10.4 -1.21% 62
Croatia Croatia 4.02 -1.03% 194
Haiti Haiti 10.2 -1.6% 66
Hungary Hungary 4.39 -1.36% 180
Indonesia Indonesia 7.66 -1.39% 99
Isle of Man Isle of Man 4.04 -0.55% 191
India India 7.79 -1.67% 96
Ireland Ireland 5.28 -3.3% 151
Iran Iran 6.51 -4.02% 119
Iraq Iraq 11.9 -1.17% 51
Iceland Iceland 5.88 -0.828% 130
Israel Israel 9 -1.86% 84
Italy Italy 3.25 -1.72% 209
Jamaica Jamaica 5.59 -1.33% 137
Jordan Jordan 10.1 -1.84% 68
Japan Japan 3.09 -2.62% 211
Kazakhstan Kazakhstan 9.73 -2.11% 75
Kenya Kenya 12.4 -0.937% 47
Kyrgyzstan Kyrgyzstan 10.3 -4.02% 64
Cambodia Cambodia 9.78 -2.04% 74
Kiribati Kiribati 11.4 -1.49% 55
St. Kitts & Nevis St. Kitts & Nevis 5.63 -1.96% 136
South Korea South Korea 2.41 -5.51% 216
Kuwait Kuwait 6.8 -2.73% 115
Laos Laos 10 -1.87% 69
Lebanon Lebanon 7.41 +0.263% 105
Liberia Liberia 13.7 -1.02% 30
Libya Libya 8.47 -3% 90
St. Lucia St. Lucia 5.48 -1.25% 144
Liechtenstein Liechtenstein 4.43 -2.02% 179
Sri Lanka Sri Lanka 6.66 -1.42% 117
Lesotho Lesotho 10.9 -2.2% 57
Lithuania Lithuania 3.94 -4.59% 198
Luxembourg Luxembourg 5.08 -0.213% 158
Latvia Latvia 3.97 -5.15% 197
Macao SAR China Macao SAR China 3.44 -7.93% 208
Saint Martin (French part) Saint Martin (French part) 6.28 +0.784% 125
Morocco Morocco 8.15 -2.05% 94
Monaco Monaco 4.5 +0.793% 177
Moldova Moldova 5.02 -4.19% 160
Madagascar Madagascar 14.4 -0.95% 22
Maldives Maldives 7.11 -3.15% 110
Mexico Mexico 7.45 -1.72% 103
Marshall Islands Marshall Islands 10.6 -2.85% 60
North Macedonia North Macedonia 4.69 -3.64% 170
Mali Mali 17.3 -0.785% 6
Malta Malta 4.1 -2.17% 190
Myanmar (Burma) Myanmar (Burma) 7.81 -1.43% 95
Montenegro Montenegro 5.34 -1.13% 149
Mongolia Mongolia 9.58 -4.54% 79
Northern Mariana Islands Northern Mariana Islands 6.52 -2.31% 118
Mozambique Mozambique 16.1 -0.824% 8
Mauritania Mauritania 15.3 -1.02% 14
Mauritius Mauritius 4.75 -1.78% 168
Malawi Malawi 14.1 -0.952% 26
Malaysia Malaysia 6.36 -3.61% 124
Namibia Namibia 13.1 -3.19% 38
New Caledonia New Caledonia 6.8 -1.21% 114
Niger Niger 17.7 -0.821% 5
Nigeria Nigeria 14.5 -1.15% 21
Nicaragua Nicaragua 9.17 -1.69% 83
Netherlands Netherlands 4.75 -0.454% 167
Norway Norway 4.85 -1.42% 163
Nepal Nepal 8.75 -0.835% 86
Nauru Nauru 12.4 -1.71% 46
New Zealand New Zealand 5.54 -0.697% 141
Oman Oman 10.5 -4.32% 61
Pakistan Pakistan 12.6 -1.03% 44
Panama Panama 7.68 -2.29% 98
Peru Peru 7.66 -1.35% 100
Philippines Philippines 7.63 -5.69% 101
Palau Palau 5.76 -1.58% 133
Papua New Guinea Papua New Guinea 11.6 -1.5% 54
Poland Poland 4.11 -4.6% 189
Puerto Rico Puerto Rico 2.74 -1.22% 214
North Korea North Korea 6.19 -0.649% 126
Portugal Portugal 3.8 -0.104% 201
Paraguay Paraguay 9.56 -1.72% 80
Palestinian Territories Palestinian Territories 12.6 -2.16% 43
French Polynesia French Polynesia 5.1 -2.76% 157
Qatar Qatar 8.7 -1.87% 87
Romania Romania 4.62 -2.01% 175
Russia Russia 4.33 -3.82% 183
Rwanda Rwanda 12.8 -1.27% 41
Saudi Arabia Saudi Arabia 9.67 -1.11% 77
Sudan Sudan 14.8 -0.912% 18
Senegal Senegal 13.4 -0.0478% 32
Singapore Singapore 4.04 +0.548% 192
Solomon Islands Solomon Islands 12.7 -1.41% 42
Sierra Leone Sierra Leone 13.4 -1.33% 31
El Salvador El Salvador 7.23 -1.22% 108
San Marino San Marino 3.23 -4.88% 210
Somalia Somalia 18.2 -0.926% 1
Serbia Serbia 4.27 -2.04% 187
South Sudan South Sudan 12.6 +0.0238% 45
São Tomé & Príncipe São Tomé & Príncipe 13 -0.409% 39
Suriname Suriname 8.25 -0.884% 93
Slovakia Slovakia 4.74 -3.01% 169
Slovenia Slovenia 4.31 -2.24% 184
Sweden Sweden 5.06 -3.69% 159
Eswatini Eswatini 11.1 -1.53% 56
Sint Maarten Sint Maarten 3.89 +4.7% 199
Seychelles Seychelles 7.45 -1.22% 104
Syria Syria 9.73 +3.32% 76
Turks & Caicos Islands Turks & Caicos Islands 5.38 -1.87% 145
Chad Chad 18 -1.04% 2
Togo Togo 14.2 -1.14% 24
Thailand Thailand 4 -2.37% 195
Tajikistan Tajikistan 12 -2.06% 50
Turkmenistan Turkmenistan 10.1 -3.07% 67
Timor-Leste Timor-Leste 10.7 -4.51% 58
Tonga Tonga 10.2 -0.765% 65
Trinidad & Tobago Trinidad & Tobago 5.32 -2.43% 150
Tunisia Tunisia 6.81 -4.51% 113
Turkey Turkey 6.17 -4.15% 127
Tuvalu Tuvalu 10.6 -1.18% 59
Tanzania Tanzania 15.7 -0.95% 10
Uganda Uganda 15.8 -1.12% 9
Ukraine Ukraine 3.03 -3.34% 212
Uruguay Uruguay 4.76 -2.73% 166
United States United States 5.27 -1.12% 152
Uzbekistan Uzbekistan 11.9 +1.29% 52
St. Vincent & Grenadines St. Vincent & Grenadines 6.14 -2.79% 128
Venezuela Venezuela 7.09 -1.98% 111
British Virgin Islands British Virgin Islands 3.88 +0.244% 200
U.S. Virgin Islands U.S. Virgin Islands 5.25 +1.22% 154
Vietnam Vietnam 6.5 -2.44% 120
Vanuatu Vanuatu 13.2 -2% 37
Samoa Samoa 12.3 -3.21% 48
Kosovo Kosovo 5.59 -1.49% 138
Yemen Yemen 15.7 -0.636% 12
South Africa South Africa 8.91 -1.16% 85
Zambia Zambia 14.9 -1.15% 17
Zimbabwe Zimbabwe 13.3 -0.572% 34

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.0004.FE.5Y'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.0004.FE.5Y'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))