Population ages 0-14, total

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 18,129 -1.74% 192
Afghanistan Afghanistan 18,290,445 +2.07% 22
Angola Angola 16,802,739 +2.58% 24
Albania Albania 457,163 -2.31% 145
Andorra Andorra 9,739 -1.66% 203
United Arab Emirates United Arab Emirates 1,752,388 +2.3% 104
Argentina Argentina 9,872,172 -2.31% 43
Armenia Armenia 583,557 +0.721% 140
American Samoa American Samoa 12,630 -3.4% 196
Antigua & Barbuda Antigua & Barbuda 16,691 -1.82% 194
Australia Australia 4,853,841 +1% 72
Austria Austria 1,305,915 -0.0129% 115
Azerbaijan Azerbaijan 2,225,408 -1.91% 95
Burundi Burundi 6,279,206 +1.11% 60
Belgium Belgium 1,899,835 -1.06% 102
Benin Benin 6,009,622 +1.8% 64
Burkina Faso Burkina Faso 9,843,868 +0.826% 44
Bangladesh Bangladesh 48,578,250 -0.105% 9
Bulgaria Bulgaria 932,787 -0.473% 126
Bahrain Bahrain 297,348 -0.723% 157
Bahamas Bahamas 71,881 -1.82% 178
Bosnia & Herzegovina Bosnia & Herzegovina 412,550 -2.02% 149
Belarus Belarus 1,488,542 -2.74% 109
Belize Belize 110,851 -0.105% 170
Bermuda Bermuda 8,795 -2.05% 204
Bolivia Bolivia 3,697,500 +0.185% 78
Brazil Brazil 41,689,815 -0.958% 10
Barbados Barbados 48,701 -1.36% 182
Brunei Brunei 96,363 -0.133% 173
Bhutan Bhutan 165,503 -1.94% 165
Botswana Botswana 810,033 +1.17% 133
Central African Republic Central African Republic 2,612,217 +3.12% 90
Canada Canada 6,239,253 +1.71% 61
Switzerland Switzerland 1,350,671 +1.24% 113
Chile Chile 3,353,323 -1.88% 82
China China 225,546,074 -3.63% 2
Côte d’Ivoire Côte d’Ivoire 13,051,954 +1.46% 31
Cameroon Cameroon 12,069,528 +1.86% 35
Congo - Kinshasa Congo - Kinshasa 50,303,111 +3.17% 8
Congo - Brazzaville Congo - Brazzaville 2,561,416 +1.33% 91
Colombia Colombia 10,721,183 -0.518% 41
Comoros Comoros 321,704 +1.15% 152
Cape Verde Cape Verde 134,092 -2.65% 167
Costa Rica Costa Rica 964,386 -2.29% 123
Cuba Cuba 1,679,242 -1.78% 105
Curaçao Curaçao 23,273 -2% 189
Cayman Islands Cayman Islands 12,053 +1.28% 197
Cyprus Cyprus 218,305 +1.1% 162
Czechia Czechia 1,675,559 -1.6% 106
Germany Germany 11,616,507 -0.505% 37
Djibouti Djibouti 340,917 -0.0182% 151
Dominica Dominica 11,833 -1.76% 199
Denmark Denmark 938,172 -0.575% 125
Dominican Republic Dominican Republic 3,037,290 -0.407% 85
Algeria Algeria 14,198,314 +0.381% 28
Ecuador Ecuador 4,435,185 -1.35% 75
Egypt Egypt 37,286,014 +0.367% 11
Eritrea Eritrea 1,348,374 +0.456% 114
Spain Spain 6,306,734 -1.62% 59
Estonia Estonia 214,546 -1.95% 163
Ethiopia Ethiopia 51,582,434 +1.82% 7
Finland Finland 824,904 -1.09% 132
Fiji Fiji 251,638 -0.57% 159
France France 11,308,764 -1.34% 39
Faroe Islands Faroe Islands 10,925 -0.437% 201
Micronesia (Federated States of) Micronesia (Federated States of) 36,039 -0.409% 186
Gabon Gabon 926,325 +1.68% 127
United Kingdom United Kingdom 11,896,520 -0.229% 36
Georgia Georgia 764,116 -2.26% 136
Ghana Ghana 12,331,256 +0.877% 34
Gibraltar Gibraltar 6,941 +1.4% 207
Guinea Guinea 6,034,878 +1.58% 63
Gambia Gambia 1,110,840 +1.09% 120
Guinea-Bissau Guinea-Bissau 853,815 +1.04% 131
Equatorial Guinea Equatorial Guinea 705,633 +1.89% 137
Greece Greece 1,373,339 -2.86% 111
Grenada Grenada 22,786 -1.94% 190
Greenland Greenland 11,824 -0.0507% 200
Guatemala Guatemala 5,812,199 -0.218% 65
Guam Guam 43,593 +0.619% 184
Guyana Guyana 242,350 +0.0153% 161
Hong Kong SAR China Hong Kong SAR China 790,619 -1.94% 135
Honduras Honduras 3,314,961 +0.469% 83
Croatia Croatia 538,313 -1.35% 141
Haiti Haiti 3,671,700 -0.0676% 79
Hungary Hungary 1,377,105 -0.89% 110
Indonesia Indonesia 69,731,786 -0.545% 5
Isle of Man Isle of Man 11,970 -2.07% 198
India India 357,277,018 -0.849% 1
Ireland Ireland 998,333 -1.09% 121
Iran Iran 20,548,324 -0.704% 19
Iraq Iraq 16,842,790 +0.743% 23
Iceland Iceland 71,873 +1.2% 179
Israel Israel 2,733,909 +0.52% 88
Italy Italy 7,014,798 -2.09% 57
Jamaica Jamaica 530,994 -2.28% 142
Jordan Jordan 3,543,086 -0.81% 80
Japan Japan 14,177,949 -2.26% 29
Kazakhstan Kazakhstan 6,048,714 +0.722% 62
Kenya Kenya 20,787,672 +0.313% 18
Kyrgyzstan Kyrgyzstan 2,336,553 +0.731% 94
Cambodia Cambodia 5,255,154 +0.166% 70
Kiribati Kiribati 46,670 +0.819% 183
St. Kitts & Nevis St. Kitts & Nevis 8,520 -0.618% 205
South Korea South Korea 5,469,118 -3.6% 66
Kuwait Kuwait 906,178 +0.366% 128
Laos Laos 2,346,362 +0.176% 93
Lebanon Lebanon 1,520,375 -1.43% 108
Liberia Liberia 2,218,724 +0.987% 96
Libya Libya 2,023,318 -0.951% 98
St. Lucia St. Lucia 31,522 -1.61% 187
Liechtenstein Liechtenstein 5,733 +0.28% 209
Sri Lanka Sri Lanka 4,828,158 -2.02% 73
Lesotho Lesotho 806,862 -0.0481% 134
Lithuania Lithuania 424,717 -0.65% 147
Luxembourg Luxembourg 106,925 +1.42% 171
Latvia Latvia 287,063 -2.56% 158
Macao SAR China Macao SAR China 95,563 -0.116% 174
Saint Martin (French part) Saint Martin (French part) 5,575 -4.11% 211
Morocco Morocco 9,761,312 -0.583% 45
Monaco Monaco 5,205 +1.38% 212
Moldova Moldova 472,807 -3.78% 143
Madagascar Madagascar 12,548,437 +1.65% 33
Maldives Maldives 103,407 -1.94% 172
Mexico Mexico 32,073,369 -0.789% 13
Marshall Islands Marshall Islands 12,945 -3.93% 195
North Macedonia North Macedonia 301,494 -3.36% 156
Mali Mali 11,294,982 +2.28% 40
Malta Malta 74,840 +2.95% 177
Myanmar (Burma) Myanmar (Burma) 13,243,811 -0.207% 30
Montenegro Montenegro 113,081 -1.08% 169
Mongolia Mongolia 1,134,746 -0.124% 117
Northern Mariana Islands Northern Mariana Islands 9,742 -4.45% 202
Mozambique Mozambique 15,403,894 +2.33% 27
Mauritania Mauritania 2,207,911 +2.15% 97
Mauritius Mauritius 186,544 -2.19% 164
Malawi Malawi 8,814,904 +1.09% 49
Malaysia Malaysia 7,746,734 -1.05% 53
Namibia Namibia 1,120,535 +1.41% 119
New Caledonia New Caledonia 62,350 -0.0769% 180
Niger Niger 12,597,379 +2.53% 32
Nigeria Nigeria 95,430,802 +0.928% 3
Nicaragua Nicaragua 1,989,004 -0.188% 100
Netherlands Netherlands 2,703,750 -0.311% 89
Norway Norway 902,081 -0.991% 129
Nepal Nepal 8,429,548 -1.14% 50
Nauru Nauru 4,513 -0.463% 213
New Zealand New Zealand 967,265 +0.364% 122
Oman Oman 1,305,323 +2.47% 116
Pakistan Pakistan 92,177,917 +0.553% 4
Panama Panama 1,124,149 -0.253% 118
Peru Peru 8,202,157 -0.51% 52
Philippines Philippines 32,283,392 -1.78% 12
Palau Palau 3,228 -1.79% 215
Papua New Guinea Papua New Guinea 3,540,961 +0.821% 81
Poland Poland 5,412,210 -2.28% 67
Puerto Rico Puerto Rico 372,501 -3.15% 150
North Korea North Korea 5,020,759 +0.128% 71
Portugal Portugal 1,369,961 +0.444% 112
Paraguay Paraguay 1,980,901 +0.563% 101
Palestinian Territories Palestinian Territories 2,012,369 +1.53% 99
French Polynesia French Polynesia 53,829 -2.97% 181
Qatar Qatar 430,695 +6.96% 146
Romania Romania 2,996,893 -0.961% 86
Russia Russia 24,800,269 -1.55% 15
Rwanda Rwanda 5,326,367 +1.16% 68
Saudi Arabia Saudi Arabia 8,408,026 +3.53% 51
Sudan Sudan 20,417,377 +0.37% 20
Senegal Senegal 7,064,495 +1.16% 56
Singapore Singapore 705,477 +1.14% 138
Solomon Islands Solomon Islands 302,860 +1.32% 155
Sierra Leone Sierra Leone 3,291,637 +0.971% 84
El Salvador El Salvador 1,572,260 -1.16% 107
San Marino San Marino 4,165 -3.12% 214
Somalia Somalia 8,856,978 +3.35% 47
Serbia Serbia 942,697 -0.815% 124
South Sudan South Sudan 4,648,072 +1.57% 74
São Tomé & Príncipe São Tomé & Príncipe 89,099 +0.816% 175
Suriname Suriname 162,663 -0.313% 166
Slovakia Slovakia 854,583 -1% 130
Slovenia Slovenia 312,887 -1.17% 154
Sweden Sweden 1,795,348 -1.22% 103
Eswatini Eswatini 414,509 +0.0507% 148
Sint Maarten Sint Maarten 6,561 -1.37% 208
Seychelles Seychelles 24,212 +0.373% 188
Syria Syria 7,195,425 +0.529% 55
Turks & Caicos Islands Turks & Caicos Islands 7,479 -0.187% 206
Chad Chad 9,350,715 +3.56% 46
Togo Togo 3,760,974 +1.35% 77
Thailand Thailand 10,570,661 -2.3% 42
Tajikistan Tajikistan 3,840,419 +1.25% 76
Turkmenistan Turkmenistan 2,361,281 +1.24% 92
Timor-Leste Timor-Leste 471,433 -0.508% 144
Tonga Tonga 36,881 -1.02% 185
Trinidad & Tobago Trinidad & Tobago 243,020 -1.42% 160
Tunisia Tunisia 2,951,290 -1% 87
Turkey Turkey 18,342,818 -1.57% 21
Tuvalu Tuvalu 3,178 -0.688% 216
Tanzania Tanzania 29,162,822 +2.46% 14
Uganda Uganda 21,778,080 +1.87% 17
Ukraine Ukraine 5,258,230 -2.52% 69
Uruguay Uruguay 619,508 -2.14% 139
United States United States 58,922,790 -0.569% 6
Uzbekistan Uzbekistan 11,309,784 +2.76% 38
St. Vincent & Grenadines St. Vincent & Grenadines 21,422 -2.33% 191
Venezuela Venezuela 7,251,085 -2.04% 54
British Virgin Islands British Virgin Islands 5,720 -3.08% 210
U.S. Virgin Islands U.S. Virgin Islands 17,219 -0.646% 193
Vietnam Vietnam 23,453,385 -0.995% 16
Vanuatu Vanuatu 125,584 +1.51% 168
Samoa Samoa 83,859 -0.0596% 176
Kosovo Kosovo 316,321 -11.7% 153
Yemen Yemen 16,691,217 +2.78% 25
South Africa South Africa 16,567,466 +0.477% 26
Zambia Zambia 8,836,615 +1.63% 48
Zimbabwe Zimbabwe 6,799,094 +0.689% 58

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.0014.TO'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.0014.TO'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))