Population ages 0-14, female (% of female population)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Aruba Aruba 15.7 -1.95% 166
Afghanistan Afghanistan 42.3 -0.722% 11
Angola Angola 43.7 -0.507% 8
Albania Albania 16 -1.17% 162
Andorra Andorra 11.9 -3.19% 210
United Arab Emirates United Arab Emirates 22.1 -1.29% 114
Argentina Argentina 20.9 -2.6% 124
Armenia Armenia 17.3 -1.49% 146
American Samoa American Samoa 27.1 -1.96% 85
Antigua & Barbuda Antigua & Barbuda 16.7 -2.28% 154
Australia Australia 17.2 -1.01% 148
Austria Austria 13.6 -0.482% 191
Azerbaijan Azerbaijan 20.3 -2.35% 126
Burundi Burundi 44.2 -1.48% 7
Belgium Belgium 15.4 -1.76% 169
Benin Benin 41.1 -0.656% 15
Burkina Faso Burkina Faso 41 -1.39% 17
Bangladesh Bangladesh 26.6 -1.24% 86
Bulgaria Bulgaria 13.6 -0.489% 190
Bahrain Bahrain 24.2 -1.49% 102
Bahamas Bahamas 16.9 -2.37% 152
Bosnia & Herzegovina Bosnia & Herzegovina 12 -1.28% 207
Belarus Belarus 14.8 -2.26% 177
Belize Belize 26.2 -1.59% 90
Bermuda Bermuda 13 -1.68% 201
Bolivia Bolivia 29.3 -1.2% 75
Brazil Brazil 19 -1.4% 132
Barbados Barbados 16.3 -1.34% 159
Brunei Brunei 21.3 -0.975% 120
Bhutan Bhutan 21.6 -2.5% 118
Botswana Botswana 31.8 -0.573% 61
Central African Republic Central African Republic 46.7 -0.194% 1
Canada Canada 14.7 -1.29% 178
Switzerland Switzerland 14.5 -0.327% 182
Chile Chile 16.5 -2.4% 156
China China 15.2 -3.42% 170
Côte d’Ivoire Côte d’Ivoire 41.1 -0.946% 14
Cameroon Cameroon 41 -0.795% 18
Congo - Kinshasa Congo - Kinshasa 45.6 -0.139% 6
Congo - Brazzaville Congo - Brazzaville 40.1 -1.09% 21
Colombia Colombia 19.6 -1.58% 129
Comoros Comoros 36.8 -0.697% 43
Cape Verde Cape Verde 25.3 -3.02% 94
Costa Rica Costa Rica 18.2 -2.76% 137
Cuba Cuba 14.6 -1.55% 179
Curaçao Curaçao 14 -2.17% 186
Cayman Islands Cayman Islands 16.1 -0.6% 160
Cyprus Cyprus 15.7 +0.13% 164
Czechia Czechia 14.8 -1.83% 176
Germany Germany 13.4 -0.0125% 198
Djibouti Djibouti 28.6 -1.39% 77
Dominica Dominica 17.8 -1.84% 141
Denmark Denmark 15.2 -1.05% 171
Dominican Republic Dominican Republic 25.9 -1.26% 91
Algeria Algeria 30.3 -1.03% 69
Ecuador Ecuador 23.9 -2.21% 105
Egypt Egypt 31.5 -1.36% 62
Eritrea Eritrea 37.3 -1.38% 40
Spain Spain 12.3 -2.51% 206
Estonia Estonia 14.5 -2.08% 181
Ethiopia Ethiopia 38.4 -0.796% 31
Finland Finland 14.1 -2.05% 184
Fiji Fiji 26.4 -1.3% 89
France France 15.6 -1.62% 167
Faroe Islands Faroe Islands 20.2 -0.946% 127
Micronesia (Federated States of) Micronesia (Federated States of) 30.7 -1.04% 67
Gabon Gabon 36.8 -0.586% 42
United Kingdom United Kingdom 16.5 -1.27% 157
Georgia Georgia 18.9 -1.18% 133
Ghana Ghana 35.3 -1.02% 50
Gibraltar Gibraltar 17 -0.872% 150
Guinea Guinea 39.9 -0.757% 22
Gambia Gambia 39.7 -1.18% 24
Guinea-Bissau Guinea-Bissau 37.9 -1.14% 33
Equatorial Guinea Equatorial Guinea 39.1 -0.671% 27
Greece Greece 12.5 -2.81% 205
Grenada Grenada 19.1 -2.11% 131
Greenland Greenland 21.3 -0.0701% 121
Guatemala Guatemala 30.9 -1.77% 66
Guam Guam 25.5 -0.29% 93
Guyana Guyana 28 -0.598% 81
Hong Kong SAR China Hong Kong SAR China 9.38 -1.98% 216
Honduras Honduras 30.1 -1.22% 72
Croatia Croatia 13 -1.55% 200
Haiti Haiti 30.6 -1.26% 68
Hungary Hungary 13.5 -0.562% 196
Indonesia Indonesia 24.1 -1.36% 104
Isle of Man Isle of Man 13.8 -1.98% 189
India India 24.4 -1.67% 100
Ireland Ireland 17.9 -2.44% 139
Iran Iran 22.2 -1.76% 112
Iraq Iraq 35.8 -1.33% 49
Iceland Iceland 17.7 -1.65% 142
Israel Israel 26.6 -0.724% 87
Italy Italy 11.3 -2.03% 212
Jamaica Jamaica 18.2 -2.3% 138
Jordan Jordan 31 -2% 65
Japan Japan 10.9 -1.83% 213
Kazakhstan Kazakhstan 28 -0.555% 80
Kenya Kenya 36.4 -1.67% 46
Kyrgyzstan Kyrgyzstan 31.1 -0.997% 64
Cambodia Cambodia 28.6 -0.997% 76
Kiribati Kiribati 33.2 -0.846% 55
St. Kitts & Nevis St. Kitts & Nevis 17.5 -1.18% 144
South Korea South Korea 10.3 -3.63% 215
Kuwait Kuwait 22.9 -2.12% 111
Laos Laos 29.7 -1.22% 73
Lebanon Lebanon 24.8 -1.92% 98
Liberia Liberia 39 -1.15% 28
Libya Libya 27.1 -1.97% 84
St. Lucia St. Lucia 17.1 -1.81% 149
Liechtenstein Liechtenstein 13.4 -0.235% 197
Sri Lanka Sri Lanka 20.9 -1.56% 123
Lesotho Lesotho 33.5 -1.15% 53
Lithuania Lithuania 13.6 -1.13% 193
Luxembourg Luxembourg 15.5 -0.245% 168
Latvia Latvia 13.9 -1.8% 188
Macao SAR China Macao SAR China 12.5 -1.7% 204
Saint Martin (French part) Saint Martin (French part) 19.8 +0.429% 128
Morocco Morocco 25.2 -1.56% 95
Monaco Monaco 13 +2.13% 202
Moldova Moldova 17.9 -1.34% 140
Madagascar Madagascar 38.9 -0.808% 29
Maldives Maldives 24.1 -2.33% 103
Mexico Mexico 23.4 -1.66% 108
Marshall Islands Marshall Islands 34.3 -0.545% 52
North Macedonia North Macedonia 16 -1.54% 161
Mali Mali 46.1 -0.686% 3
Malta Malta 13.1 -0.964% 199
Myanmar (Burma) Myanmar (Burma) 23.5 -0.918% 106
Montenegro Montenegro 16.8 -1.14% 153
Mongolia Mongolia 31.2 -1.36% 63
Northern Mariana Islands Northern Mariana Islands 22 -2.75% 116
Mozambique Mozambique 43 -0.568% 9
Mauritania Mauritania 41.4 -0.709% 13
Mauritius Mauritius 15 -2.42% 174
Malawi Malawi 39.7 -1.5% 23
Malaysia Malaysia 22.1 -2.29% 113
Namibia Namibia 36.3 -0.897% 47
New Caledonia New Caledonia 20.7 -1.1% 125
Niger Niger 46.6 -0.768% 2
Nigeria Nigeria 40.9 -1.12% 19
Nicaragua Nicaragua 27.9 -1.51% 82
Netherlands Netherlands 14.6 -0.913% 180
Norway Norway 15.9 -1.87% 163
Nepal Nepal 26.5 -1.23% 88
Nauru Nauru 37.4 -0.992% 38
New Zealand New Zealand 17.5 -1.34% 143
Oman Oman 32.1 -1.66% 59
Pakistan Pakistan 36.4 -1.06% 45
Panama Panama 24.3 -1.54% 101
Peru Peru 23.4 -1.62% 107
Philippines Philippines 27.2 -2.71% 83
Palau Palau 18.9 -1.98% 134
Papua New Guinea Papua New Guinea 33.2 -0.959% 56
Poland Poland 14 -1.98% 185
Puerto Rico Puerto Rico 10.7 -3.11% 214
North Korea North Korea 18.3 -0.114% 136
Portugal Portugal 11.9 -0.74% 208
Paraguay Paraguay 28 -0.705% 79
Palestinian Territories Palestinian Territories 37.1 -1.06% 41
French Polynesia French Polynesia 18.7 -3.3% 135
Qatar Qatar 25.6 -1% 92
Romania Romania 14.9 -1.04% 175
Russia Russia 15.7 -1.43% 165
Rwanda Rwanda 36.3 -0.971% 48
Saudi Arabia Saudi Arabia 29.6 -1.42% 74
Sudan Sudan 39.6 -0.472% 25
Senegal Senegal 37.4 -1.04% 37
Singapore Singapore 11.8 -0.741% 211
Solomon Islands Solomon Islands 36.6 -1.03% 44
Sierra Leone Sierra Leone 37.7 -1.15% 34
El Salvador El Salvador 23 -1.53% 110
San Marino San Marino 11.9 -3.53% 209
Somalia Somalia 46 -0.185% 4
Serbia Serbia 13.5 -0.545% 195
South Sudan South Sudan 37.9 -2.33% 32
São Tomé & Príncipe São Tomé & Príncipe 37.4 -1.33% 39
Suriname Suriname 25.2 -1.26% 96
Slovakia Slovakia 15 -0.912% 173
Slovenia Slovenia 14.4 -1.5% 183
Sweden Sweden 16.6 -1.5% 155
Eswatini Eswatini 32.6 -1.01% 57
Sint Maarten Sint Maarten 13.6 -2.38% 192
Seychelles Seychelles 21.8 -1.07% 117
Syria Syria 28.5 -3.8% 78
Turks & Caicos Islands Turks & Caicos Islands 16.4 -1.6% 158
Chad Chad 45.6 -1.42% 5
Togo Togo 39.4 -0.876% 26
Thailand Thailand 13.9 -2.36% 187
Tajikistan Tajikistan 35.2 -0.773% 51
Turkmenistan Turkmenistan 30.3 -0.46% 70
Timor-Leste Timor-Leste 33.3 -1.76% 54
Tonga Tonga 32.4 -0.989% 58
Trinidad & Tobago Trinidad & Tobago 17.2 -1.51% 147
Tunisia Tunisia 23.1 -1.59% 109
Turkey Turkey 21 -1.87% 122
Tuvalu Tuvalu 31.9 +1.21% 60
Tanzania Tanzania 41.8 -0.455% 12
Uganda Uganda 42.8 -0.918% 10
Ukraine Ukraine 12.6 -2.69% 203
Uruguay Uruguay 17.3 -2.1% 145
United States United States 17 -1.52% 151
Uzbekistan Uzbekistan 30.2 +0.737% 71
St. Vincent & Grenadines St. Vincent & Grenadines 21.4 -1.74% 119
Venezuela Venezuela 24.6 -2.45% 99
British Virgin Islands British Virgin Islands 13.6 -4.03% 194
U.S. Virgin Islands U.S. Virgin Islands 15.1 -0.587% 172
Vietnam Vietnam 22 -1.81% 115
Vanuatu Vanuatu 37.5 -0.831% 36
Samoa Samoa 37.6 -0.744% 35
Kosovo Kosovo 19.5 -2.98% 130
Yemen Yemen 40.7 -0.225% 20
South Africa South Africa 25.1 -0.796% 97
Zambia Zambia 41.1 -1.18% 16
Zimbabwe Zimbabwe 38.8 -1.02% 30

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'SP.POP.0014.FE.ZS'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'SP.POP.0014.FE.ZS'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))