Personal transfers, receipts (BoP, current US$)

Source: worldbank.org, 03.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 13,980,811 +15.9% 88
Albania Albania 1,555,198,485 +9.64% 35
Argentina Argentina 957,224,032 +3.44% 40
Armenia Armenia 691,329,426 -18.2% 46
Antigua & Barbuda Antigua & Barbuda 24,777,139 -26% 85
Austria Austria 341,557,974 +12.8% 57
Azerbaijan Azerbaijan 1,082,873,000 -34.6% 38
Belgium Belgium 1,815,288,527 +18.8% 34
Bangladesh Bangladesh 26,986,712,975 +22.3% 5
Bulgaria Bulgaria 1,535,920,000 -2.08% 36
Bahamas Bahamas 65,929,000 +5.19% 81
Bosnia & Herzegovina Bosnia & Herzegovina 2,305,110,134 +10.1% 32
Belarus Belarus 399,421,599 +3.36% 53
Belize Belize 151,792,093 +3.11% 69
Brazil Brazil 4,247,170,184 +6.27% 23
Bhutan Bhutan 106,356,869 -0.158% 74
China China 6,425,401,341 -6.76% 18
Colombia Colombia 11,848,222,292 +17.4% 10
Cape Verde Cape Verde 318,093,901 +6.11% 59
Costa Rica Costa Rica 650,206,707 +10.4% 47
Cyprus Cyprus 562,962,262 +3.89% 48
Czechia Czechia 803,000,600 +10% 43
Germany Germany 16,226,185 +0.278% 87
Dominica Dominica 36,237,037 +12.6% 84
Dominican Republic Dominican Republic 10,756,000,000 +5.9% 12
Ecuador Ecuador 6,539,835,109 +20.1% 17
Estonia Estonia 65,296,746 -0.202% 82
Finland Finland 82,250,767 +0.087% 77
France France 350,648,005 +0.087% 55
United Kingdom United Kingdom 2,552,793,718 +3.64% 30
Georgia Georgia 3,132,191,568 -0.361% 26
Gambia Gambia 520,646,127 +3.37% 49
Greece Greece 309,977,848 -1.96% 60
Grenada Grenada 68,715,442 -0.0823% 80
Guatemala Guatemala 21,452,862,460 +8.23% 6
Honduras Honduras 9,510,224,045 +6.3% 13
Croatia Croatia 3,109,324,378 +9.51% 27
Hungary Hungary 701,477,717 +9.3% 45
Indonesia Indonesia 15,701,686,400 +10.4% 8
India India 129,430,244,556 +15.3% 1
Iceland Iceland 80,330,954 +18.4% 78
Italy Italy 2,512,297,741 +4.96% 31
Jamaica Jamaica 3,357,945,830 -0.361% 25
Japan Japan 4,369,056,576 -2.52% 22
Kazakhstan Kazakhstan 236,511,763 -21.1% 62
Cambodia Cambodia 2,704,043,463 +1.72% 29
St. Kitts & Nevis St. Kitts & Nevis 21,179,333 -4.06% 86
South Korea South Korea 6,689,600,000 +6.49% 16
St. Lucia St. Lucia 63,678,543 +1.7% 83
Lesotho Lesotho 6,569,491 -0.82% 89
Lithuania Lithuania 931,737,256 +3.2% 41
Luxembourg Luxembourg 153,801,331 -39.2% 67
Latvia Latvia 763,326,525 +10.3% 44
Moldova Moldova 1,029,780,000 -8.27% 39
Mexico Mexico 64,746,381,615 +2.25% 2
North Macedonia North Macedonia 357,536,886 -2.72% 54
Montenegro Montenegro 445,132,034 +5.56% 52
Mozambique Mozambique 120,012,846 +11.5% 72
Namibia Namibia 117,304,129 +13.1% 73
Nigeria Nigeria 20,977,029,788 +8.84% 7
Nicaragua Nicaragua 5,243,100,000 +12.5% 20
Netherlands Netherlands 139,512,231 +10.3% 70
Nepal Nepal 14,109,947,134 +35.7% 9
Pakistan Pakistan 34,662,000,000 +31.5% 3
Panama Panama 467,577,274 +1.92% 51
Peru Peru 4,933,771,110 +11% 21
Philippines Philippines 30,805,836,219 +3.35% 4
Poland Poland 2,952,000,000 -10.3% 28
Paraguay Paraguay 878,191,146 +17.8% 42
Palestinian Territories Palestinian Territories 152,563,038 0% 68
Qatar Qatar 1,443,131,868 +0.421% 37
Romania Romania 5,292,720,720 +6.47% 19
Solomon Islands Solomon Islands 77,766,328 +24.6% 79
El Salvador El Salvador 8,461,154,438 +2.41% 15
Suriname Suriname 160,306,202 +9.13% 66
Slovakia Slovakia 329,217,849 +0.725% 58
Slovenia Slovenia 101,315,629 +0.087% 75
Sweden Sweden 343,834,067 +0.0721% 56
Thailand Thailand 8,777,476,137 -0.181% 14
Tajikistan Tajikistan 2,018,801,241 +46.8% 33
Timor-Leste Timor-Leste 211,557,653 +12.5% 63
Tonga Tonga 191,882,614 -3.67% 64
Trinidad & Tobago Trinidad & Tobago 189,366,841 -1.89% 65
Turkey Turkey 473,000,000 -16.7% 50
Ukraine Ukraine 4,200,000,000 +9.35% 24
Uruguay Uruguay 132,280,231 +1.13% 71
Uzbekistan Uzbekistan 11,426,911,864 +20.3% 11
St. Vincent & Grenadines St. Vincent & Grenadines 93,277,384 +3% 76
Samoa Samoa 270,387,890 +6.72% 61

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'BX.TRF.PWKR.CD'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'BX.TRF.PWKR.CD'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))