Personal remittances, received (current US$)

Source: worldbank.org, 01.09.2025

Year: 2024

Flag Country Value Value change, % Rank
Angola Angola 14,106,590 +16.9% 105
Albania Albania 2,274,440,594 +11.7% 47
Argentina Argentina 1,044,565,331 +3.45% 60
Armenia Armenia 1,181,642,798 -18.6% 58
Antigua & Barbuda Antigua & Barbuda 26,278,876 -24.7% 102
Australia Australia 1,883,610,723 +9.04% 50
Austria Austria 3,591,781,613 +10.1% 39
Azerbaijan Azerbaijan 1,351,678,000 -29.3% 56
Belgium Belgium 15,208,330,615 +2.34% 13
Bangladesh Bangladesh 27,122,365,385 +22.3% 7
Bulgaria Bulgaria 2,672,220,000 +16.9% 45
Bahamas Bahamas 65,929,000 +5.19% 97
Bosnia & Herzegovina Bosnia & Herzegovina 3,124,315,488 +10.7% 42
Belarus Belarus 1,382,627,658 +9.68% 55
Belize Belize 154,149,603 +3.06% 89
Brazil Brazil 4,902,400,448 +10.6% 32
Bhutan Bhutan 109,604,204 +1.54% 92
Canada Canada 851,437,898 +0.501% 67
Switzerland Switzerland 3,501,719,973 +2.04% 41
Chile Chile 100,140,400 +3.17% 93
China China 31,410,598,200 +6.53% 6
Colombia Colombia 11,873,232,976 +17.4% 16
Cape Verde Cape Verde 336,131,379 +6.24% 79
Costa Rica Costa Rica 724,796,055 +9.47% 70
Czechia Czechia 4,247,984,188 -0.652% 37
Germany Germany 21,225,006,284 +0.969% 10
Djibouti Djibouti 55,997,202 -4.43% 99
Dominica Dominica 38,629,993 +12% 100
Denmark Denmark 1,525,855,426 +6.69% 53
Dominican Republic Dominican Republic 11,247,000,000 +5.91% 17
Ecuador Ecuador 6,544,355,901 +20% 28
Spain Spain 6,265,012,172 +17.6% 29
Estonia Estonia 496,257,592 +1.85% 76
Finland Finland 748,914,875 +0.087% 68
France France 36,860,723,169 -0.131% 4
United Kingdom United Kingdom 4,833,962,372 +7.75% 33
Georgia Georgia 3,999,181,897 -4.81% 38
Gambia Gambia 528,765,281 +2.69% 74
Greece Greece 561,447,512 +3.6% 72
Grenada Grenada 70,237,558 -0.0245% 96
Guatemala Guatemala 21,649,327,000 +8.35% 8
Hong Kong SAR China Hong Kong SAR China 462,446,995 +1.91% 77
Honduras Honduras 9,532,724,045 +6.29% 20
Croatia Croatia 6,739,238,332 +10.9% 27
Hungary Hungary 5,237,273,919 +1.9% 31
Indonesia Indonesia 16,038,366,972 +10.9% 12
India India 137,674,533,896 +15.2% 1
Iceland Iceland 240,772,257 +10.5% 84
Israel Israel 952,100,000 -2.99% 62
Italy Italy 11,151,789,911 -7.86% 18
Jamaica Jamaica 3,564,377,716 -1.01% 40
Japan Japan 4,644,199,356 -1.44% 35
Kazakhstan Kazakhstan 240,391,763 -20.9% 85
Cambodia Cambodia 2,827,917,512 +1.65% 43
St. Kitts & Nevis St. Kitts & Nevis 36,437,261 -2.03% 101
South Korea South Korea 7,449,400,000 +5.89% 25
Kuwait Kuwait 20,390,350 -4.2% 103
St. Lucia St. Lucia 64,958,539 +2.64% 98
Lesotho Lesotho 499,297,840 +3.08% 75
Lithuania Lithuania 1,053,040,838 +7.82% 59
Luxembourg Luxembourg 2,430,239,294 -2.18% 46
Latvia Latvia 1,335,826,281 +8.19% 57
Moldova Moldova 1,917,700,000 -4.7% 48
Maldives Maldives 5,652,307 +5% 106
Mexico Mexico 67,637,913,797 +2.11% 2
North Macedonia North Macedonia 458,150,266 -0.932% 78
Malta Malta 15,404,229 +0.209% 104
Montenegro Montenegro 855,216,059 +6.24% 65
Mozambique Mozambique 266,914,842 +4.82% 82
Malaysia Malaysia 1,605,279,752 -5.82% 52
Namibia Namibia 142,746,932 +14% 90
Nigeria Nigeria 21,292,957,333 +8.92% 9
Nicaragua Nicaragua 5,245,600,000 +12.5% 30
Netherlands Netherlands 4,358,133,100 +7.32% 36
Norway Norway 621,067,525 +3.62% 71
Nepal Nepal 14,185,362,324 +36.4% 14
Pakistan Pakistan 34,914,000,000 +31.5% 5
Panama Panama 531,591,167 +3.09% 73
Philippines Philippines 40,279,405,932 +3.02% 3
Poland Poland 8,688,000,000 +1.72% 22
Portugal Portugal 1,804,893,649 +5.91% 51
Paraguay Paraguay 878,191,146 +17.8% 63
Palestinian Territories Palestinian Territories 735,607,752 -77.3% 69
Qatar Qatar 1,443,131,868 +0.421% 54
Romania Romania 9,523,551,276 -4.43% 21
Russia Russia 1,907,830,000 -27.1% 49
Saudi Arabia Saudi Arabia 321,870,198 +3.05% 80
Solomon Islands Solomon Islands 95,178,838 +12.6% 94
El Salvador El Salvador 8,488,402,967 +2.43% 23
Suriname Suriname 160,306,202 +9.13% 88
Slovakia Slovakia 2,741,066,434 +0.725% 44
Slovenia Slovenia 852,252,884 -7.82% 66
Sweden Sweden 4,701,879,680 +15.5% 34
Thailand Thailand 9,584,457,475 -1.11% 19
Tajikistan Tajikistan 6,801,890,973 +46.8% 26
Timor-Leste Timor-Leste 219,567,997 +13.8% 86
Tonga Tonga 256,868,087 +1.03% 83
Trinidad & Tobago Trinidad & Tobago 199,168,367 -1.57% 87
Turkey Turkey 982,000,000 -4.57% 61
Ukraine Ukraine 11,969,000,000 -20% 15
Uruguay Uruguay 136,080,579 +1.09% 91
United States United States 7,870,000,000 +1.75% 24
Uzbekistan Uzbekistan 16,579,258,955 +17% 11
St. Vincent & Grenadines St. Vincent & Grenadines 94,443,874 +3.06% 95
Samoa Samoa 282,254,313 +6.54% 81
South Africa South Africa 855,374,671 +6.47% 64

                    
# Install missing packages
import sys
import subprocess

def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])

# Required packages
for package in ['wbdata', 'country_converter']:
try:
__import__(package)
except ImportError:
install(package)

# Import libraries
import wbdata
import country_converter as coco
from datetime import datetime

# Define World Bank indicator code
dataset_code = 'BX.TRF.PWKR.CD.DT'

# Download data from World Bank API
data = wbdata.get_dataframe({dataset_code: 'value'},
date=(datetime(1960, 1, 1), datetime.today()),
parse_dates=True,
keep_levels=True).reset_index()

# Extract year
data['year'] = data['date'].dt.year

# Convert country names to ISO codes using country_converter
cc = coco.CountryConverter()
data['iso2c'] = cc.convert(names=data['country'], to='ISO2', not_found=None)
data['iso3c'] = cc.convert(names=data['country'], to='ISO3', not_found=None)

# Filter out rows where ISO codes could not be matched — likely not real countries
data = data[data['iso2c'].notna() & data['iso3c'].notna()]

# Sort for calculation
data = data.sort_values(['iso3c', 'year'])

# Calculate YoY absolute and percent change
data['value_change'] = data.groupby('iso3c')['value'].diff()
data['value_change_percent'] = data.groupby('iso3c')['value'].pct_change() * 100

# Calculate ranks (higher GDP per capita = better rank)
data['rank'] = data.groupby('year')['value'].rank(ascending=False, method='dense')

# Calculate rank change from previous year
data['rank_change'] = data.groupby('iso3c')['rank'].diff()

# Select desired columns
final_df = data[['country', 'iso2c', 'iso3c', 'year', 'value',
'value_change', 'value_change_percent', 'rank', 'rank_change']].copy()

# Optional: Add labels as metadata (could be useful for export or UI)
column_labels = {
'country': 'Country name',
'iso2c': 'ISO 2-letter country code',
'iso3c': 'ISO 3-letter country code',
'year': 'Year',
'value': 'GDP per capita (current US$)',
'value_change': 'Year-over-Year change in value',
'value_change_percent': 'Year-over-Year percent change in value',
'rank': 'Country rank by GDP per capita (higher = richer)',
'rank_change': 'Change in rank from previous year'
}

# Display first few rows
print(final_df.head(10))

# Optional: Save to CSV
#final_df.to_csv("gdp_per_capita_cleaned.csv", index=False)
                    
                
                    
# Check and install required packages
required_packages <- c("WDI", "countrycode", "dplyr")

for (pkg in required_packages) {
  if (!requireNamespace(pkg, quietly = TRUE)) {
    install.packages(pkg)
  }
}

# Load the necessary libraries
library(WDI)
library(dplyr)
library(countrycode)

# Define the dataset code (World Bank indicator code)
dataset_code <- 'BX.TRF.PWKR.CD.DT'

# Download data using WDI package
dat <- WDI(indicator = dataset_code)

# Filter only countries using 'is_country' from countrycode
# This uses iso2c to identify whether the entry is a recognized country
dat <- dat %>%
  filter(countrycode(iso2c, origin = 'iso2c', destination = 'country.name', warn = FALSE) %in%
           countrycode::codelist$country.name.en)

# Ensure dataset is ordered by country and year
dat <- dat %>%
  arrange(iso3c, year)

# Rename the dataset_code column to "value" for easier manipulation
dat <- dat %>%
  rename(value = !!dataset_code)

# Calculate year-over-year (YoY) change and percentage change
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(
    value_change = value - lag(value),                              # Absolute change from previous year
    value_change_percent = 100 * (value - lag(value)) / lag(value) # Percent change from previous year
  ) %>%
  ungroup()

# Calculate rank by year (higher value => higher rank)
dat <- dat %>%
  group_by(year) %>%
  mutate(rank = dense_rank(desc(value))) %>% # Rank countries by descending value
  ungroup()

# Calculate rank change (positive = moved up, negative = moved down)
dat <- dat %>%
  group_by(iso3c) %>%
  mutate(rank_change = rank - lag(rank)) %>% # Change in rank compared to previous year
  ungroup()

# Select and reorder final columns
final_data <- dat %>%
  select(
    country,
    iso2c,
    iso3c,
    year,
    value,
    value_change,
    value_change_percent,
    rank,
    rank_change
  )

# Add labels (variable descriptions)
attr(final_data$country, "label") <- "Country name"
attr(final_data$iso2c, "label") <- "ISO 2-letter country code"
attr(final_data$iso3c, "label") <- "ISO 3-letter country code"
attr(final_data$year, "label") <- "Year"
attr(final_data$value, "label") <- "GDP per capita (current US$)"
attr(final_data$value_change, "label") <- "Year-over-Year change in value"
attr(final_data$value_change_percent, "label") <- "Year-over-Year percent change in value"
attr(final_data$rank, "label") <- "Country rank by GDP per capita (higher = richer)"
attr(final_data$rank_change, "label") <- "Change in rank from previous year"

# Print the first few rows of the final dataset
print(head(final_data, 10))